J. Iran. Chem. Soc., Vol. 7, No. 1 March 2010, pp.251~259.

Current location: JICS Archive > Vol. 7 > No. 1 > Articles : 30

Selective Determination of Cysteine in the Presence of Tryptophan by Carbon Paste Electrode Modified with Quinizarine


M. Mazloum-Ardakania,*, Z. Taleata, H. Beitollahia and H. Naeimib


aDepartment of Chemistry, Faculty of Science, Yazd University, Yazd, I. R. Iran
bDepartment of Chemistry, Faculty of Science, University of Kashan, Kashan, I. R. Iran


A sensitive and selective electrochemical method for the determination of L-cysteine was developed using a modified carbon paste electrode (MCPE) with quinizarine. Cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. The apparent charge transfer rate constant, ks and transfer coefficient for electron transfer between quinizarine and carbon paste electrode (CPE) were calculated as 2.76 s-1 and 0.6, respectively. This modified carbon paste electrode shows excellent electrocatalytic activity toward the oxidation of L-cysteine in a phosphate buffer solution (pH 7.0). The linear range of 1.0 × 10-6 to 1.0 × 10-3 M and a detection limit (3σ) of 2.2 × 10-7 M were observed in pH 7.0 phosphate buffer solutions. In differential pulse voltammetry, the quinizarine modified carbon paste electrode (QMCPE) could separate the oxidation peak potentials of L-cysteine and tryptophan present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. This work introduces a simple and easy approach to selective detection of L-cysteine in the presence of tryptophan. Also, the modified electrode was employed for the determination of L-cysteine in the real samples such as serum of blood and acetylcysteine tablet.


Keywords: L-Cysteine, Tryptophan, Quinizarine, Carbon paste electrode, Simultaneous determination, Electrocatalysis

Download full-text PDF