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 In the framework of the Tsallis statistical mechanics, we study the change of the population of states when the parameter q is 
varied, for some model systems; the results show that the difference between predictions of the Boltzmann-Gibbs and Tsallis 
statistics can be much smaller than the precision of any existing experiment. Also, the relation between privilege of rare and 
frequent events and the value of q is restudied. It is shown that positive q privilege frequent and negative q privilege rare events. 
Finally, the convergence criteria of the partition function of some simple model systems, in the framework of Tsallis statistical 
mechanics, is studied. Based on this study, we conjecture that q ≤ 1, in the thermodynamic limit. 
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INTRODUCTION 

 The Boltzmann-Gibbs (BG) entropy is defined as 

 S = -k∑
i

ii pp ln                                                            (1) 

where pi is the probability of finding the system in the state i 
and kB is the Boltzmann constant. According to the 
information theory-based formulation of statistical mechanics, 
we can consider the appropriate constraints for each ensemble 
and derive the probability of having the system in each of its 
states by finding the extremum of the entropy, (1) [1]. A 
generalized form for the entropy is [2] 

 Sq = k
1

1

−

−∑
q

p
i

q
i

                                                                 (2) 

where q is the nonextensivity index, and k is a constant. 
Statistical Mechanics is generalized, by finding the extremum 
of (2) instead of (1). The result is called Nonextensive 
Statistical Mechanics or Tsallis Statistics. Equation (2) goes to 

*Corresponding author. E-mail: ali.nassimi@utoronto.ca  

Eq. (1) in the limit of q → 1; also, every relation in this new 
statistics goes to its corresponding relation in the BG statistics, 
in the limit of q → 1 [3]. The distribution functions arising in 
this statistics have found wide applications through sciences 
which were commonly considered to be out of the realm of 
statistical mechanics [4]. The q-expectation value of an 
operator A is defined through <A>q = ∑ =

W

i i
q

i Ap
1

, where Ai 

represent the value of the observable A when the system is in 
the state i; this definition is replaced for the usual expectation 
value relation <A> = ∑i ii Ap  in the BG statistics. It is 

claimed that, systems containing long-range interactions 
and/or long-range microscopic memory (i.e., non-Markovian 
processes) have to be described by Tsallis Statistics. 
 The normalization condition and the energy constraint of 
the canonical ensemble in the BG statistics are, respectively, 

 ∑=

W

i ip
1

= 1     and     i
W

i ip ε∑ =1
=U,                                  (3) 

 
where εi represents the energy of the system in its i’th 
microstate and W  is  the  number  of  microstates.  While,  the  
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normalization condition is generally accepted, the energy 
constraint is somehow ambiguous in this generalization. First, 
it has been considered to be the same as (3) [2], this 
assumption yields 

 q
ii qp −+−= 1

1

)])(1[( βεα ,                                                   (4) 

where α and β are undetermined Lagrange multipliers. The 
position of the Lagrange multiplier α makes it difficult to find 
its value by using the normalization condition in (3). Thus, 
Curado and Tsallis suggest [5] 

 ∑ =

W

i i
q

ip
1

ε = Uq                                                                 (5) 

 
as the energy constraint, which results, respectively in the 
following probability and partition function, 

 Pi = (Zq)-1 q
iq −−− 1

1

])1(1[ βε    and  

 q
i iq qZ −∑ −−= 1

1

])1(1[ βε                                                (6) 

There are more complex proposals for the normalization 
choice [6]; but, it is shown that these versions of Pi and Zq are 
all equivalent to each other. They can be transformed to each 
other by the appropriate change of variable, i.e., β → β’[7]. 
It should be mentioned that wherever the expression in square 
brackets is negative Pi  = 0 by postulate. 
 We can ask whether it is possible for a system to have the 
same probability for each state both with a value of q not equal 
to one and with the BG statistics. Thus, in section (2), we 
study the sensitivity of the population of states to the value of 
q. The effect of the parameter q on the weight of rare and 
frequent events is addressed in section (3). The beauty of the 
statistical-mechanics is in evaluating macroscopic properties 
from microscopic properties. But in the non-extensive 
formalism, we need to know the value of q in addition to the 
microscopic properties. Although, there is no general way for 
evaluating q a priori; but, confining the range of possible 
values of q will be addressed in section (4). 
 
SENSITIVITY OF THE POPULATION OF 
STATES TO THE VALUE OF q 

 The  population  of  states   in   a   two   state   system  with  

 

 

Fig. 1. The probability of a two-state system being in the  
                 higher energy state, vs. q and βε. 
 

energies 0 and  ε are, respectively,  
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Because of the form of these equations, it is difficult to study 
their behavior analytically. P1 vs. q and βε have been sketched 
in Fig. 1. At constant values of q, we can see the increase of  
P1 toward 0.5 by decreasing the value of βε, as expected by the 
inverse temperature interpretation of β. At constant βε, it is 
seen that q is playing a role similar to the temperature.  
 It can be shown that the energy gap for a spin 1/2 system, 
in a magnetic field of the order of one Tesla, is of the order of  
10-23 J for electrons and 10-27J for nuclei. Thus, for a two state 
system we assume ε = 10-25 J, yielding βε =10-2/T. 
 Therefore, for a temperature range of 1 to 0.01 K, βε 
ranges from 0.01 to 1. P1 as a function of q has been sketched 
in Fig. 2, for the values of βε equal to 0.01 and 4. In the first 
case, for a unit change in q the population of the higher energy 
state undergoes a change of the order of 10-5, while in the 
second case that change is of the order of 10-1. Thus, for a two 
state system the sensitivity to the value of q increases by 
decreasing   the  temperature.  For  a  typical  value  of  energy 
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separation between states, it seems impossible to observe the 
effect of a change in q, unless considering very low 
temperatures.  
 Studying Sq vs. q and βε shows that higher values of q 
reduce the sensitivity of Sq to βε, and q is again playing a role 
similar to temperature. This is a peculiar graph, since it 
contains a number of peaks; its study is reserved for the future. 
For a harmonic oscillator, hυ/kB ranges from 6215 for H2 to 
133 for K2 [8]. Thus, ∆E = hυ for the vibration of a diatomic 
molecule is of the order of 10-20 J, resulting in βε = 103/T. 
Studying the populations of the ground and first excited state 
versus q at different values of βε shows that the sensitivity of 
the population of the ground and first excited states to the 
value of q increases with decreasing the temperature. 
 
RARE EVENT WEIGHT 
 
 Since the expectation value of an observable is evaluated 
through <A> =∑i ii Ap , q < 1 (q > 1) is considered to 

privilege the rare (frequent) event [3] as an evident result of Pi 

≤ 1. But there is a complication arising from the fact that Pi  

itself is q-dependent. In Fig. 1 P1 is the rare event and P0 is the 
frequent event, this figure shows the greater the value of q the 
higher the probability of the rare event. Thus, in order to make 
a valid judgment regarding the effect of q on rare or frequent 
events, we must study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 q

ip ∝[1-(1-q)βεi]q/(1-q)                                                    (8) 

 
To study (8), the definition of rare (frequent) as the state with 
smaller (larger) probability lose its meaning. But, we can 
define the state with a larger (smaller) ε as the rare (frequent) 
event. For large values of q, Pi ∝ [1-(1-q)βεi]-1, which is 
preferring the frequent event. A numerical study of (8) for 
small values of q shows the privilege of rare events for 
negative values of q (when they are allowed) and privilege of 
frequent events for positive values of q. The case of q = 0 
resembles the case of T = 0 in Fermi-Dirac statistics, all states 
have the same weight, until the maximum value of βε = 1 is 
reached. 
 
THE LEGITIMATE RANGE OF q 
 
 In order to obtain physical properties of a system from its 
partition function, the partition function must be a definite 
function of the system's externally determined parameters. 
Therefore, a partition function which is divergent does not 
represent a physical system. For an N-dimensional (D) 
harmonic oscillator with a single frequency, υ, the partition 
function is 
 
 

 Zq=∑∞

= −
−+

0 !)!1(
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n nN
nN [1+(q-1)βhυ(n+N/2)]1/(1-q)              (7) 

Fig. 2. The probability of a two-state system being in the excited state as a function of q. 
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where n = i ni is the sum of excitations. Note that, even in the 

absence of any interaction, the overall partition function of the 
system is not equal to multiplication of the single mode 
partition functions. In the limit of large n, the multiplicity 
(apart from the constant eN/NN-1) behaves like nN-1. Therefore, 
the series converge for q < 1+ 1/N. For the 1-D case, it is easy 
to use the integral test and consider the truncation of the series 
to get q < 2. 
 For a d-D particle in a box, by approximating the sum in 
the partition function as an integral, we have  

Zq ∫
∞

∝
0
ε (d/2-1)[1+(q-1)βε]1/(1-q)dε. The convergence condition 

for this integral is 1+2/d > q. In the case of 1-D, it is easy to 
show that the partition function is convergent for q < 3. 
 In the 2-D rigid rotor, Zq=∑∞

=1
2

j
[1-(1-q)β(ћ2/2I)j2]1/(1-q)+1. 

In the limit of large j, the terms of this series will behave like 
j2/(1-q). Considering the range of q where the series is truncated, 
and using the integral test, we have q < 3 as the acceptable 
range of q. In the 3-D rigid rotor,  
Zq = ∑∞

=
+

0
)12(

j
j [1-(1-q)β(ћ2/2I)j(j+1)]1/(1-q). In the limit of 

large j, the terms behave like j(3-q)/(1-q) ; Therefore, q < 2 yields 
a convergent partition function. 
 
CONCLUSIONS 
 
 In non-extensive statistical mechanics there is a limitation 
imposed on the values of q, due to the convergence of the 
partition function series. By considering the results of section 
(4), we can see that in an ideal gas, where d → ∞ or in a bath 
of harmonic oscillators where N → ∞, we have q ≤ 1. Based 
on this observation, we conjecture that in the thermodynamic 
limit, regardless of the specific system under consideration, we 
must have q ≤ 1. At the same time a large negative value of q 
doesn't seem physical because it freezes the system in a few 
number of its lower energy levels. For nano-systems the 
number of particles in the system is not so large; thus, q may 
be slightly larger than 1. This may be a  starting  point  for  the  
 
 
 
 
 

 
 
study of nonextensivity in nano-systems. 
 Revisiting the common believe regarding the effect of q on 
rare and frequent events show that contrary to what is 
considered in the literature positive values of q privilege the 
frequent event, while negative values of q privilege rare 
events. 
 Physical properties of a system depend on the value of q 
through the population of states. The sensitivity of the 
population of states to the value of q decreases with increasing 
the temperature, for some model systems. Therefore, it is 
possible for a system believed to obey the BG statistics, to 
obey the Tsallis statistics with a value of q ≠ 1 but close to 1. 
This can be verifiable only in infinitely low temperature 
experiments. 
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