J. Iran. Chem. Soc., Vol. 5, Suppl., October 2008, pp. S113-S117.

JOURNAL OF THE Iranian Chemical Society

An Efficient and General Procedure for Room-Temperature Synthesis of Benzofurans under Solvent-Free Conditions Using KF/Al₂O₃

A. Sharifi*, M.S. Abaee, A. Tavakkoli and M. Mirzaei

Faculty of Organic Chemistry and Natural Products, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran

(Received 19 November 2007, Accepted 9 February 2008)

Dedicated to Professor Dr. H. Firouzabadi on the occasions of his 65th birthday and retirement

Room temperature Rap-Stoermer condensation of α -haloacetophenone with various 2-hydroxyarylaldehydes mediated by KF/Al₂O₃ resulted in sole formation of good to excellent yields of various substituted benzofurans in the absence solvent or extra stimulant.

Keywords: Benzofuran, Rap-Stoermer reaction, KF/Al₂O₃, Solvent-free

INTRODUCTION

Benzofuran derivatives constitute highly valuable heterocyclic motifs found in the structure of many natural [1] and synthetic products [2]. Derivatives of these compounds are known to possess important pharmaceutical [3], antifungal [4], antitumor [5], and other bioorganic properties [6]. In addition, benzofurans are used in cosmetic formulations [7] and have the application as synthetic precursors for optical brighteners [8]. Many multi-step synthetic approaches for the construction of the benzofuran ring exist in which the key-step includes dehydrative annulation of phenols bearing appropriate ortho vinyllic substituents [9], intramolecular cyclization of substituted allyl-aryl ethers [10], cyclization of oformylphenoxyacetic acids or esters [11], or ring-closure of arylacetylenes [12]. Perhaps, the most straightforward method for one-pot preparation of benzofuran derivatives is the Rap-Stoermer condensation of salicylaldehyde with α -haloketones [13] providing the opportunity for the synthesis of a diverse array of benzofuran derivatives in a single step process.

The reaction is traditionally carried out under basic conditions in refluxing alcoholic solvents giving low yields of products in many occasions [3-4]. In line with the context of green and sustainable chemistry, several reports are recently released to expand the synthetic applicability of Rap-Stoermer reaction by using microwave irradiation [14], solvent-free systems [15], polymer-supported reagents [16], and solid state synthesis [17]. However, these reactions are still conducted at high temperature [15,16], require the use of commercially unavailable starting materials [17], conducted in refluxing solvents [16] or need an external stimulant to proceed [14,17].

In recent years, potassium fluoride on alumina (KF/Al_2O_3) [18] has emerged as an environmentally friendly and very powerful solid phase reagent for various organic functional manipulations such as ring closure reactions [19], epoxidation of alkenes [20], ether synthesis [21], amide [22] and amine [23] chemistry, Michael addition [24], aldol condensation [25], alkene synthesis [26], rearrangement processes [27], and cycloaddition reactions [28]. A number of advantages are associated with the use of this reagent like avoiding the

^{*} Corresponding author. E-mail: sharifi@ccerci.ac.ir

An Efficient and General Procedure for Room-Temperature

cleavage step required in many solid phase syntheses [29], decrease of solvent use, no special handling requirement, easy monitoring of reactions and convenient workup procedure by removal of the solid from the reaction mixture via a simple filtration. In continuation of our previous works on environmentally sustainable reactions [30], we would like to herein report a novel procedure for efficient Rap-Stoermer condensation of α -haloketones with various salicylaldehyde derivatives performed at room temperature in the presence of KF/Al₂O₃ under solvent-free conditions (Scheme 1).

EXPERIMENTAL

General: Reactions were monitored by TLC and GC. NMR spectra were obtained on a FT-NMR Bruker Ultra ShieldTM (500 MHz) or Bruker AC 80 MHz as CDCl₃ solutions and the chemical shifts were expressed as δ units with Me₄Si as the internal standard. GC experiments were carried out using a Fisons 8000 apparatus. All chemicals and reagents were purchased from commercial sources.

Preparation of KF/alumina [31]: To a stirred solution of potassium fluoride (20g) in water (150 ml) is added neutral alumina (60-80 mesh, 30 g) in water (150 ml). After 30 minutes, the water is evaporated in a rotary evaporator at ~60 °C. When most of the water has been removed, the remaining mixture is heated to 140-150 °C and maintained at that temperature under vacuum (5 mmHg) for 6h to give 50 g of KF-alumina reagent.

Typical procedure for KF/Al_2O_3 mediated Rap-Stoermer condensations: An equimolar mixture of **1** (5 mmol) and **2** (5.5 mmol) was suspended in 5 gr KF/Al₂O₃ and the mixture was stirred at room temperature until TLC and GC experiments showed complete disappearance of the starting materials. The mixture was extracted with Et_2O (2X30 mL), the extracts were combined, and the volatile portion was removed under reduced pressure. The product was purified with short column chromatography over silica gel using *n*-hexane/EtOAc (7:1). The spectroscopic and physical properties of the products were obtained and compared with those available in the literature [2e,14,32].

Spectral data for new compounds

(4-Bromophenyl)(7-methoxybenzofuran-2-yl)methanone (**3bb**). Yellow crystals were obtained in 98% yield, mp 93–95 °C; IR (KBr, cm⁻¹) 1639, 1554, 1280, 871; ¹H NMR (CDCl₃) δ 4.08 (s, 3H), 7.02 (d, 1H, *J* = 7.8 Hz), 7.30 (dd, 1H, *J* = 7.8, 7.8 Hz), 7.35 (d, 1H, *J* = 7.8 Hz), 7.61 (s, 1H), 7.74 (d, 2H, *J* = 8.41 Hz), 8.03 (d, 2H, *J* = 8.41 Hz); ¹³C NMR (CDCl₃) δ 56.5, 110.1, 115.4, 116.7, 125.2, 128.5, 128.9, 131.6, 132.3, 136.1, 146.2, 146.5, 152.9, 183.1; MS (70 eV) m/z (%): 332, 330 (M⁺), 251, 175, 76. Calcd. For C₁₆H₁₁BrO₃: C, 58.03; H, 3.35. Found: C, 58.01; H, 3.47.

(7-Methoxybenzofuran-2-yl)(4-methoxyphenyl)methanone (**3bc**). White crystals were obtained in 97% yield, mp 66–68 °C; IR (KBr, cm⁻¹) 1664, 1593, 1315, 1230, 1160; ¹H NMR (CDCl₃) δ 3.93 (s, 3H), 4.07 (s, 3H), 6.98 (d, 1H, *J* = 7.7 Hz), 7.05 (d, 2H, *J* = 8.8Hz), 7.26 (dd, 1H, *J* = 7.8, 7.9 Hz), 7.32 (d, 1H, *J* = 7.8), 7.56 (s, 1H), 8.19 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃) δ 55.9, 56.5, 109.8, 114.3, 115.3, 115.8, 125.0, 129.1, 130.2, 132.5, 145.9, 146.5, 153.6, 164.0, 182.8; MS (70 eV) m/z (%): 282 (M⁺), 252, 135. Calcd. For C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.15; H, 5.12. (4-Bromophenyl)(3-methylbenzofuran-2-yl)methanone (**3eb**). White crystals were obtained in 78% yield, mp 103–105 ^oC; IR (KBr, cm⁻¹) 1643, 1562, 1296, 929; ¹H NMR (CDCl₃) δ 2.71 (s, 3H), 7.39 (d, 1H, *J* = 6.8, 7.8 Hz), 7.59-7.53 (m, 2H), 7.71 (d, 2H, *J* = 8.5 Hz), 7.75 (d, 1H, *J* = 7.8 Hz), 8.03 (d, 2H, *J* = 8.47 Hz),; ¹³C NMR (CDCl₃) δ 10.5, 112.7, 122.0, 123.9, 128.0, 128.2, 128.9, 129.6, 131.8, 132.1, 136.9, 148.4, 154.7, 185.0; MS (70 eV) m/z (%): 315, 314 (M⁺), 235, 207. Calcd. For C₁₆H₁₁BrO₂: C, 60.98; H, 3.52. Found: C, 60.59; H, 3.55.

RESULTS AND DISCUSSION

The reaction between α -chloroacetophenone with salicylaldehyde was investigated under various sets of conditions to find the optimum conditions. A solvent-free suspension of the two reactants and KF/Al₂O₃ led to 98% formation of product **3aa** within 4 hours time period (Table 1, entry 1). Conduction of the same reaction in the absence of KF/Al₂O₃ led to formation of no product after several days

Table 1. KF/Al ₂ O ₃ media	ted Rap-Stoermer condensations.
--	---------------------------------

Entry	Substrate	es Product	%Yield/Time (h)	Entry	Substrates	Product	%Yield/Time (h)
1	1a + 2a		98/4	9	Br- 1 <i>d</i> + 2 <i>b</i>		, Br 95/6
2	1a + 2b		∕Br 98/6	10	Br- 1d + 2c		_OMe 96/6
3	1a + 2c		_OMe 96/6	11	1e + 2 <i>a</i>		75/20
4	1 <i>b</i> + 2a	OMe	9064	12	1e + 2 <i>b</i>		_Br 78/20
5	1 <i>b</i> + 2 <i>b</i>		_ Br 98/6	13	1e + 2c		,∕OMe 93/20
6	1 <i>b</i> + 2c		_OMe 97/6	14	2a + 2-hydroxy- 1-naphthaldehy	de 0 3fa	81/4
7	1c+2b	O ₂ N O O 3cb	_Br 93/20	15	2b + 2-hydroxy- 1-naphthaldehyd		, Br 95/4
8	1 <i>d</i> + 2a	Br	92/6	16	2c + 2-hydroxy- 1-naphthaldehyd		_OMe 92/4

^alsolated yields

room-temperature mixing, illustrating the promoting effect of the solid catalyst. The product was easily obtained in high purity by a simple diethyl ether extraction. The optimized conditions were employed to investigate the Rap-Stoermer condensation of salicylaldehyde with other substrates bearing electron-withdrawing and electron-releasing groups. Therefore, reactions of 1a with 2b (entry 2) and with 2c (entry 3) gave 98 and 96% of **3ab** and **3ac**, respectively. The generality of the procedure was shown by subjecting o-hydroxybenzaldehydes derivatives of undergo to condensation with different α -haloacetophenones (entries 4-10). Furthermore, o-hydroxyacetophenone (entries 11-13) and 2-hydroxy-1- naphthaldehyde (entries 14-16) conveniently exhibited similar reactions. In all cases, reactions smoothly reached to completion within 4-20 hours time periods and more than 81% of the desired products were isolated by simple ethereal extraction.

In summary, we have developed a novel and general procedure for room-temperature Rap-Stoermer condensation of α -haloacetophenone with various 2-hydroxyarylaldehydes mediated by KF/Al₂O₃. Reactions complete in short time periods in the presence of no solvent or external stimulant and the procedure is applicable to both 2-hydroxyacetophenone and 2-hydroxyarylaldehydes. The versatility of the reaction, production of pure single compounds, and easy procedure and work up are among other benefits of the present method.

ACKNOWLEDGMENTS

Ministry of Science, Research, and Technology of Iran is gratefully acknowledged for partial financial support of this work.

REFERENCES

- a) T.J. Simpson, in: R.H. Thomson (Ed.), The Chemistry of Natural Products, Blackie, London, 1985; b) F.M. Dean, in: J. Apsimon (Ed.), The Total Synthesis of Natural Products, Wiley, New York, vol. 1 (1973) 513.
- [2] a) A.R. Katritzky, Y. Ji, Y. Fang, I. Prakash, J. Org. Chem.
 66 (2001) 5613; b) K.K. Park, H. Seo, J.–G. Kim, I.-H. Suh, Tetrahedron Lett. 41 (2000) 1393; c) K.C. Nicolaou, S.A. Snyder, A. Bigot, J.A. Pfefferkon, Angew. Chem. Int. Ed. 39 (2000) 1093; d) K.K. Park, I.K. Han, J.W.

Park, J. Org. Chem. 66 (2001) 6800; e) A. Shafiee, E. Behnam, J. Heterocycl. Chem. 15 (1978) 589.

- [3] N. Buu-Hoi, G. Saint-Ruf, T.B. Loc, N.D. Xuong, J. Chem. Soc. (1957) 2593.
- [4] a) K. Benkli, N. Gundogdu-Karaburun, A.C. Karaburun, U. Ucucu, S. Demirayak, N. Kiraz, Arch. Pharm. Res. 26 (2003) 202; b) N. Gundogdu-Karaburun, K. Benkli, Y. Tunali, U. Ucucu, S. Demirayak, Eur. J. Med. Chem. 41 (2006) 651.
- [5] P.G. Baraldi, R. Romagnoli, I. Beria, P. Cozzi, C. Geroni, N. Mongelli, N. Bianchi, C. Mischiati, R. Gambari, J. Med. Chem. 43 (2000) 2675.
- [6] a) J. Li, T.S. Rush, III, W. Li, D. De Vincentis, X. Du, Y. Hu, J.R. Thomason, J.S. Xiang, J.S. Skotnicki, S. Tam, K.M. Cunningham, P.S. Chockalingam, E.A. Morris, J.I. Levin, Bioorg. Med. Chem. Lett. 15 (2005) 4961; b) V. Pestellini, A. Giolitti, F. Pasqui, L. Abelli, C. Cutrufo, G. De Salvia, S. Evangelista, A. Meli, Eur. Med. Chem. 23 (1988) 203.
- [7] A.Y. Leung, S. Foster, Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics, Wiley, New York, 1996.
- [8] B. Elvers, S. Hawkins, G. Schulz, Ulmann's Encyclopedia of Industrial Chemistry, Optical Brighteners, 5th ed., Vol A18, VCH, Weinheim (1999) 153.
- [9] a) S. Thielges, E. Meddah, P. Bisseret, J. Eustache, Tetrahedron Lett. 45 (2004) 907; b) M.V. Gil, E. Roman, J.A. Serrano, Tetrahedron Lett. 41 (2000) 10201; c) J.W. Herndon, Y. Zhang, H. Wang, K. Wang, Tetrahedron Lett. 41 (2000) 8687; d) A. Arrault, F. Touzeau, G. Guillaument, J.Y. Merour. Synthesis (1999) 1241.
- [10] a) D.D. Hennings, S. Iwasa, V.H. Rawal, Tetrahedron Lett. 36 (1997) 6379; b) X. Xie, B. Chen, J. Lu, J. Han, X. She, X. Pan, Tetrahedron Lett. 45 (2004) 6235; c) S.W. Youn, J.I. Eom, Org. Lett. 7 (2005) 3355.
- [11] a) D. Bogdal, M. Warzala, Tetrahedron 56 (2000) 8769;
 b) K.K. Park, J. Jeong. Tetrahedron 61 (2005) 545; c) E. Bellur, I. Freifeld, P. Langer, Tetrahedron Lett. 46 (2005) 2185;
 d) D. Bogdal, S. Bednarz, M. Lukasiewicz, Tetrahedron 62 (2006) 9440; e) G.A. Kraus, N. Zhang, J.G. Verkade, M. Nagarajan, P.B. Kisanga, Org. Lett. 2 (2000) 2409; f) M.C. Cruz, J. Tamariz, Tetrahedron Lett. 45 (2004) 2377.

Sharifi et al.

- [12] W.M. Dai, K.W. Lai, Tetrahedron Lett. 43 (2002) 9377;
 b) C.G. Bates, P. Saejueng, J.M. Murphy, D. Venkataraman, Org. Lett. 4: (2002) 4727.
- [13] a) E. Rap, Gazz. Chim. Ital. 285 (1895) 2511; b) R. Stoermer, Liebigs. Ann. Chem. 312 (1900) 331.
- [14] M.L.N. Rao, D.K. Awasthi, D. Banerjee, Tetrahedron Lett. 48 (2007) 431.
- [15] K. Yoshizawa, S. Toyota, F. Toda, I. Csoregh, Green Chem. 5 (2003) 353.
- [16] J. Habermann, S.V. Ley, R. Smits. J. Chem. Soc., Perkin Trans. 1 (1999) 2421.
- [17] R.S. Varma, D. Kumar, P.J. Liesen, J. Chem. Soc., Perkin Trans. 1 (1998) 4093.
- [18] B.E. Blass, Tetrahedron, 58 (2002) 9301.
- [19] W.C. Wong, D. Wang, C. Forray, P.J.J. Vaysse, T.A. Branchek, C. Gluchowski, Bioorg. Med. Chem. Lett. 4 (1994) 2317.
- [20] V.K Yadav, K.K. Kapoor, Tetrahedron 52 (1996) 3659.
- [21] J. Yamawaki, T. Ando, Chem. Lett. (1980) 533
- [22] J. Yamawaki, T. Ando, T. Hanafusa, Chem. Lett. (1981) 1143.
- [23] F. Polyak, T. Dorofeeva, R. Sturkovich, Y. Goldberg, Synth. Commun. 21 (1991) 239.
- [24] Q.S. Hu, C.M. Hu, Chin. Chem. Lett. 8 (1997) 665.

- [25] H.M.S. Kumar, B.V.S. Reddy, E.J. Reddy, J.S. Yadav, Green Chem. 1 (1999) 141.
- [26] J. Yamawaki, T. Kawate, T. Ando, T. Hanafusa, Bull. Chem. Soc. Jpn. 56 (1983) 1885.
- [27] A.K.S.B. Rao, C.G. Rao & D.B. Singh, Synth. Commun. 21 (1991) 443.
- [28] F. Berree, E. Marchand, G. Morel. Tetrahedron Lett. 33 (1992) 6155.
- [29] B. Peschke, J.G. Bundgaard, J. Breinholt, Tetrahedron Lett. 42 (2001) 5127.
- [30] a) A. Sharifi, M. Mirzaei, M.R. Naimi-Jamal, J. Chem. Res. (2002) 628; b) A. Sharifi, M. Mirzaei, M.R. Saidi, Tetrahedron Lett. 40 (1999) 1179; c) A. Sharifi, M. Mirzaei, M.R. Naimi-Jamal, Monatsh. Chem. 137 (2006) 213; d) A. Sharifi, M. Mirzaei, M.R. Naimi-Jamal, Synth. Commun. 35 (2005) 1039; e) A. Sharifi, R. Salimi, M. Mirzaei, M.S. Abaee, Synth. Commun. 37 (2007) 1825.
- [31]L.A. Paquette, Encyclopedia of Reagents for Organic Synthesis, Vol 6, John Wiley & Sons, Chichester (1995) 4223.
- [32] a) L. Capuano, A. Ahlhelm, H. Hartmann, Chem. Ber. 119 (1986) 2069; b) G. Litkei, K. Gulacsi, S. Antus, Z. Dinya, Synth. Commun. 26 (1996) 3061; c) V.G.S. Box, P.C. Meleties, Tetrahedron Lett. 39 (1998) 7059.