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 This contribution describes the practical and computational aspects relevant for the quantitative analysis of chemical 
equilibria. First a systematic nomenclature based on stability constants is introduced. Next, practical aspects of potentiometric pH 
titrations and spectrophotometric titrations are discussed. The description of the computational aspects includes the Newton-
Raphson algorithm that allows the computation of all species concentrations for a given model, set of formation constants and 
total component concentrations. The second computational part introduces the Newton-Gauss algorithm for non-linear data fitting. 
Three practical examples illustrate all the above. They include the spectrophotometric investigations of the interaction of Bi(III) 
with Cl-, of Cu(II)  with EDTA and the potentiometric investigation of the Zn(II) ethylenediamine system. All Matlab softwares 
for the data generation and analysis are available from the authors. 
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INTRODUCTION 
 
 A large class of interactions between molecules and ions in 
solution can be classified as Lewis acid-base interactions. The 
quantitative investigation of these interactions encompasses 
two parts: kinetics and equilibria. The kinetic studies are 
focused on the determination of the mechanism of interaction 
and the rates for all individual reaction steps, while the 
equilibrium studies concentrate on the determination of the 
species that are formed at equilibrium together with the 
quantitative determination of the strength of the interactions as 
defined by equilibrium or formation constants.  
 In this tutorial paper we will concentrate on equilibrium 
studies. As most interactions are investigated in water, 
emphasis is put on aqueous solutions. We will start with an 
introduction into the theory of equilibria in solution, the law of 
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mass action, the notations required for the quantitative 
description of the interactions, which can be rather complex, 
particularly in aqueous solutions [1,2]. This will be followed 
by a discussion of the types of measurements that can be 
carried out and the nature of data that are delivered [3]. Next, 
we will introduce the computational methods are required for 
the analysis of the measurements. In order to give the reader 
the possibility to apply all the above concepts, we will use 
three practical examples: the spectrophotometric investigation 
of the interactions of Bi3+ with Cl-, of the interaction of edta 
with Cu2+ ion, and the potentiometric determination of the 
interaction of Zn2+ ion with ethylenediamine, en. A suite of 
Matlab programs that perform the analysis of the above data 
sets is available from the authors. 
 
CHEMICAL EQUILIBRIUM IN SOLUTION 
 
 Most   examples  of  chemical  equilibria  can  be  seen   as 
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interactions between Lewis acids and Lewis bases. In most 
instances the Lewis acid is a metal ion (M) and we use the 
corresponding word ligand (L) for the Lewis bases. However, 
it is important to remember that there are many other examples 
of Lewis acids and bases, e.g. the proton is a Lewis acid and 
water molecules of hydration are Lewis bases. The chemical 
equation describing the 1:1 interaction between metal ion and 
ligand. 
 
     MLK

M L ML⎯⎯⎯→+ ←⎯⎯⎯                                             (1) 
  
and the law of mass action states that 
 
 [ ]

[ ][ ]ML
MLK

M L
=                                              (2) 

 
where the charges are omitted for simplicity. 
 In aqueous solution, the protons are always present and 
more importantly they are also Lewis acids which can 
compete with any other Lewis acid present. The protonation 
equilibrium can be described in an analogous way as: 
 
     HLK

H L HL⎯⎯⎯→+ ←⎯⎯⎯                                           (3) 
 
with  
 
 [ ]

[ ][ ]HL
HLK

H L
=                                              (4) 

All metal ions can interact with all ligands (Lewis bases) 
present in the solution and many ligands have several Lewis 
base sites (they are polydentate) and therefore there is often a 
long list of different species that can be formed between 
metals, protons and ligands. For instance, there are complexes 
with 6 ligands, e.g., Co(NH3)6

3+or ligands that are protonated 
several times, e.g., edtaH6

2+ (Note, we omit charges for 
general species such as ML but include them for specific ones 
such as edtaH6

2+). 

 It is obviously important to develop a nomenclature that 
uniquely describes all the species formed in solution with their 
appropriate equilibrium constants. Let us concentrate on an 
example of a metal-ligand equilibrium study in aqueous 
solution.   Using  the  nomenclature  commonly   employed  in  

 
 
coordination chemistry, there are three components, M, L and 
H present. As an example, the metal can be Cu2+ to interact 
with the ligand ethylenediamine. In aqueous solution, these 
components interact to form the following species, HL, H2L, 
ML, ML2, ML3, MLH, MLH-1 and OH. In fact, many more 
species may be formed, e.g. ML2H-1, but they only form in 
small and unobservable concentrations. Note the expressions 
used: the components are the basic units that interact with each 
other to form the species; it is convenient to include the 
components in the list of species. Each of the species is 
formed by the appropriate number of components, and the 
quantitative relationship between the component and species 
concentrations is defined by the formation constant. The 
general equation is; 
 

 
[ ]

[ ] [ ] [ ]

mlh
m l h

m l h
mlh m l h

mM lL hH M L H
M L H

M L H

β⎯⎯⎯→+ + ←⎯⎯⎯

β =

                                      (5) 

 
The above example is represented in Table 1. The structure of 
most of the complexes listed in Table is clear, some structures, 
maybe not. Figure 1 gives a few examples. 
 The formation constant β11-1 represents the equilibrium for 
the formation of the deprotonated complex MLH-1. 
 
      11 1

1M L H MLH−β
−

⎯⎯⎯→+ − ←⎯⎯⎯                                   (6) 

 
Different, chemically more intuitive, ways of defining this 
species are given in Eq. (7); however, it is not easy to define 
the equilibrium constants for such equilibria in a consistent 
way, the standard notation is more transparent and generally 
applicable. 

 
    

or

     

( )

( )

ML ML OH H

ML H ML OH

⎯⎯→ +←⎯⎯

⎯⎯→− ←⎯⎯

                                          (7) 

 
The definition of the stabilities of all species as a function of 
the component concentrations via the βmlh values is consistent 
and allows the development of general, compact and thus fast 
computer programs for data analysis. Any stability constant, 
e.g.  the  first  one  shown  in  Eq. (7),  can  be  expressed  as  a 
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   Table 1. Notation for Equilibrium Modelling 

Notation 
Species 

m l h 
Formation constant 

M 1 0 0 β100 = 1 

L 0 1 0 β010 = 1 

H 0 0 1 β001 = 1 

LH 0 1 1 β =011
[ ]

[ ][ ]
LH

L H
 

LH2 0 1 2 β = 2
012 2

[ ]
[ ][ ]

LH
L H

 

ML 1 1 0 β =110
[ ]

[ ][ ]
ML

M L
 

ML2 1 2 0 β = 2
120 2

[ ]
[ ][ ]

ML
M L

 

ML3 1 3 0 β = 3
130 3

[ ]
[ ][ ]

ML
M L

 

MLH 1 1 1 β =111
[ ]

[ ][ ][ ]
MLH

M L H
 

MLH-1 1 1 -1 β = -1
11-1 -1

[ ]
[ ][ ][ ]

MLH
M L H

 

H-1 0 0 -1 β = =00-1 [ ][ ] WOH H K  
 
 
function of the standard formation constants: 
 
 1

11 1 1101
[ ( )][ ] [ ( )] [ ][ ]  

[ ] [ ][ ][ ][ ]
ML OH H ML OH M LK

ML MLM L H
−

−−= = = β β  

                                                                                           (8) 
 
 
 
 
 
 
 
 
 
 

 
 
THE TITRATION EXPERIMENT 
 
 There are two goals in an equilibrium investigation: (i) the 
determination of the model, which is essentially the list of 
different species that are formed from the components, and (ii) 
the evaluation of the formation constants for all species. The 
simplest case is the determination of a formation constant for 
an equilibrium of the type represented in Eq. (1), where the 
model is known. One can prepare a solution with known total 
concentrations of M and of L, measure the concentrations one 
of the species ([M] or [L] or [ML]), compute the 
concentrations of other species via the law of conservation of 
mass and then compute KML by substituting concentrations of 
all species into Eq. (2). However, the model is usually not 
known and many more experiments are required in order to 
determine the model and evaluate the formation constants. 
 The experiment for the investigation of an equilibrium 
consists of the preparation of a series of solution with different 
known total concentrations of the components. Usually this is 
called a titration. Obviously there is no limit to the number of 
possible experiments. Apart from the very simplest cases, a 
titration will always include more data than minimally 
required for the determination of a particular constant. This 
increases the robustness of the analysis and also delivers 
statistical information about the results, such as standard 
deviations of the fitted parameters (see below). Usually this is 
done as a titration: a solution of one of the components is 
added stepwise to the solution of the other component(s). The 
added solution is delivered by a burette, which can be manual 
or automatic under computer control. After the addition of 
each aliquot and enough time for the establishment of the 
equilibrium, the mixture is analyzed in some appropriate way. 
The  scalar  nmeas  represents  the  number  of  additions   and 
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Fig. 1. Reasonable structures for the complexes ML, MLH and MLH-1. 
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measurement that were taken during the titration.  
 Titrations can be undertaken manually, by preparing a 
series of solutions with known total concentrations; it is much 
more efficient and reliable to use computerized titration set-
ups. Here a computer controls the burette and the pH-meter or 
spectrophotometer. After each addition, the solution is stirred 
and enough time is allowed for complete equilibration before 
the data are acquired. 
 In principle any measurement that provides information 
about at least one of the species can theoretically be employed 
for a titration. The most common titration uses the pH 
electrode which provides information on the free proton 
concentration, [H], at any time during the titration. Also of 
importance are the spectrophotometric titrations where the 
absorption spectrum of the solution is acquired as a function of 
the progress of the titration. Absorption data are governed by 
Beer-Lambert's law; they are only indirectly related to the 
concentrations via the usually unknown molar absorptivities 
for all absorbing species. The advantage of spectrophotometric 
titrations is the availability of absorption spectra for all 
species; this allows structural analysis of the species. No such 
information is available from pH titrations. There are other ion 
specific electrodes that allow potentiometric titrations, but 
none of these electrodes is anywhere near as useful as the pH 
electrode. Their range is very limited. Several other 
spectroscopies are potentially applicable; examples include 
NIR, IR, ESR and NMR titrations. 
 It is clear that experimental conditions, i.e. the range of 
total concentrations of the components, have to be chosen 
carefully. Any species for which the formation constant is to 
be determined needs to exist at some minimal concentration 
somewhere during the complete titration. If a protonation 
equilibrium occurs around pH 10, a titration that covers only 
the pH range from say pH 1 to pH 7 will not contain the 
information required to determine the above protonation 
constant. Unfortunately, the range of required experimental 
conditions is not always as obvious. This is naturally the case 
when novel systems are investigated as the results are not 
known prior to the design of the experiment. There are only a 
series of titrations, starting with general conditions and 
subsequent titrations, where the conditions can be chosen 
according to the results of the primary titrations. 
 In   aqueous  solution,  protonation  and  complexation  are 

 
 
usually coupled and generally a series of titrations is required 
to define all protonation and complexation constants. Usually, 
a minimum of 2 titrations are required. The first titration is a 
titration of a solution of the protonated ligand with the base, 
resulting in the protonation constants of the ligand; the second 
is titration of an acidic solution of the ligand and metal with 
base, delivering additional information about the complexation 
equilibria. 
 If ternary complexes are investigated, the components may 
be M, L', L'' and H, or M', M'', L and H or even M'', M'', L', L'' 
and H. In such instances a more extensive series of titrations is 
required to define all formation constants. 
 The original experimental data required for the subsequent 
analysis include the total concentrations of the components in 
the solutions after each addition, conveniently collected as 
rows in a matrix Ctot, and the actual measurements which are 
collected in a vector dmeas in the case of pH titrations, or as 
rows of a matrix Dmeas for spectrophotometric titrations. 
 
DATA ANALYSIS 
 
 Computer programs written for the analysis of 
measurements for equilibrium investigations contain two parts 
that require specific attention. 
 The more obvious one is the algorithm for parameter 
fitting, its task is to determine the optimal values for the 
parameters for a given measurement and model. In a titration 
experiment the parameters to be fitted are usually the 
formation constants and, in the case of a spectrophotometric 
titration, additionally the molar absorption spectra of all 
absorbing species. Titrations are also used in analytical 
applications, and then the concentrations of some of the 
components can also be fitted to the titration data.  
 The other important part is the computation of all species 
concentrations for a given set of total component 
concentrations and formation constants. This calculation has to 
be performed for the solution after each addition of reagent 
during the complete titration. This second task forms the core 
of the data fitting and, therefore, we will discuss it first. 
 
The Newton-Raphson Algorithm 
 The task of the Newton-Raphson algorithm is the 
computation of the species  concentrations  for  a  given  set of  
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formation constants and total concentrations of the 
components, [M]tot, [L]tot and [H]tot. The basis for these 
computations is the law of mass action and the law of 
conservation of mass. At equilibrium, the different species of 
the model all reach a certain concentration and these 
concentrations have to obey the above laws, i.e. the law of 
mass action has to relate the species concentrations to the free 
concentrations of the components and, as an example, the total 
concentration of metal that exists in the different species has to 
equal the known total concentration [M]tot. 
 These computations are usually fairly complex and 
iterative algorithms have to be employed [4]. While there are 
many possible ways to do this, the standard algorithm starts 
with initial guesses for the free component concentrations. 
Theses are used to compute all species concentrations and 
subsequently mass conservation is checked. If there are any 
discrepancies, the iterative algorithm is continued. 
 It is probably best to illustrate the algorithm based on the 
example given in Table 1. Each species concentration is 
computed from the formation constants and the free 
component concentrations as given in Eq. (9) for a general 
equilibrium and for the example of MLH 
 
 

e.g.      111

[ ] [ ] [ ] [ ]

[ ] [ ][ ][ ]

i i i
i i i i i i

m l h
m l h m l hM L H M L H

MLH M L H

= β

= β
                                 (9) 

 
Obviously Eqs. (9) must be met for all species. Thus, for nspec 
species formed there are nspec-3 such equations. (Recall, the 3 
components themselves are also species)  
 The hydroxide ions and deprotonated species need some 
additional attention. The concentration for the species [MLH-1] 
is computed as:  
 
 1

1 11-1[ ] [ ][ ][ ]MLH M L H −
− = β                                         (10) 

 
The formation constant for the hydroxide ions is: 
 
 

00 1 1
[ ] [ ][ ]
[ ] w
OH OH H K
H

−
− +

− + −β = = =                                   (11) 

 
It is most convenient to define the hydroxide concentration as 
negative    proton   concentration,   [OH-] = -[H+].  In  aqueous  

 
 
solution, the addition of x moles of OH- is equivalent to 
removing x moles of H+. 
 For each of the components, M, L and H, we can write the 
following equations: 
                                     

 [M]tot-calc = [M] + [ML] + [ML2] + 

 [ML3] + [MLH] + [MLH-1] 

 [L]tot-calc = [L] + [LH] + [LH2] + 

 [ML] +2[ML2] + 3[ML3] + [MLH] + [MLH-1] 

 [M]tot-calc = [H] + [LH] + 2[LH2] + [MLH] - 

 [MLH-1] - [OH]                                                    (12) 

 
where [M]tot, [L]tot and [H]tot are the known independent 
variables in a titration. They are computed from the reagent 
solutions and dilutions occurring during the titration. See the 
chapter The Titration Experiment. The total concentrations of 
the components are stored in the matrix Ctot. These total 
concentrations have to equal the sums over all appropriately 
weighted species concentrations, Eq. (12). The differences are 
collected in a vector d. The goal of the algorithm is to 
determine the free component concentrations such that the 
differences d are zero. 
 

 _

_

_

[ ] [ ]
[ ] [ ]
[ ] [ ]

M tot tot calc

L tot tot calc

H tot tot calc

d M M
d L L
d H H

= −

= −

= −

                                   (12) 

 
 An important advantage of using the formation constant 
formalism is that equations such as Eq.  
 
 

 
_
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_
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_
1
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[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

i i i
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i i i
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m l h

tot calc i i
i

nspec
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tot calc i i
i
nspec

m l h
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i

M m M L H

L l M L H

H h M L H
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=

=
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∑

∑

∑

                                (13) 

 
Note the formation constants for the components themselves 
are   all  = 1, i.e.,    β100 = β010 = β001 = 1.    This   simplifies  the  
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notation, the writing of computer code and also reduces 
computation time. 
 It is easy to see that we are dealing with a set of nspec 
equations, 3 Eqs. (13) and nspec-3 Eqs. (9), with nspec 
unknowns, [M], [L], [H], [LH], …, [MLH-1]. While not all 
systems of n equations with n unknowns have a solution, it can 
be shown that the systems we are dealing with always have 
exactly one physically possible solution. It is of course the one 
that is realised the actual solution in the titration vessel. 
 As with most non-linear system of equations, there is no 
explicit solution. There are many ways of solving such a 
system of equations. The Newton-Raphson algorithm is 
usually well behaved and is relatively straightforward to 
implement. The algorithm is sketched in the flow sheet of Fig. 
2 which to a large extent is self explanatory. 
 The Jacobian J is the ncomp × ncomp matrix of the 
derivatives of the differences d with respect to the component 
concentrations [M], [L], [H]. A shift vector that moves the 
vector of component concentrations towards the true solution 
is computed subsequently. The iterative process is usually well 
behaved and converges well, however, there is no guarantee 
for conversion and special measures need to be introduced to 
deal with such cases. 
 These calculations are performed for each step of the 
titration, each one resulting in a vector of species 
concentrations. It is most convenient to collect all these 
vectors as rows in a matrix C in which each column contains 
the concentration profile for one species. In summary one can 
state that the Newton-Raphson algorithm computes the species 
concentration matrix C from the matrix Ctot of total 
component concentrations, based on the equilibrium model 
used. 
 The explanations given here are insufficient for complete 
understanding and more extensive explanations are beyond the 
scope of this tutorial, for details refer to [4]. Study of the 
Matlab program supplied by the authors, see end of this paper, 
can also assist the comprehension of the methods discussed. 
 
FITTING 
 
 The measured data, Dmeas (or dmeas), as distinguished from 
theoretically perfect data, are always corrupted by 
experimental errors, instrumental shortcomings, noise and  etc.  
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Fig. 2. Flow sheet for the Newton Raphson algorithm, see text  
            for details 

 
The true data are never known. The idea of data fitting is to 
determine a calculated set of data, Dcalc, which resembles the 
measured data as closely as possible. This calculated data set 
is defined by the model (both chemical and type of 
measurement) and the collection of parameters, the vector par. 
The differences between the measured and calculated data are 
the residuals, R: 
 
  =  - (model, )meas calcR D D par                                 (14) 
  
Note that for univariate data, the residuals r, and the data dmeas 
and dcalc are vectors instead of matrices, otherwise there are no  
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differences. The task of the fitting algorithm is to find a, 
hopefully unique, set of parameters for which the measured 
data Dmeas and their calculated values Dcalc are as similar as 
possible. The measure for the quality of the fit is the sum of 
squares, ssq, which is the sum over the squares of all elements 
of the matrix R (or the vector r) 
 
 2

,i j
i j

ssq R= ∑∑                                    (15) 

 
Combining Eqs. (14) and (15) clearly demonstrates that ssq is 
a function of the parameters, and of course of the model and 
the data themselves.  
 The chemical model, together with the parameters allows 
the computation of all concentrations for the complete 
measurement, i.e. all species concentrations as a function of 
the titration. This is done by the Newton-Raphson algorithm, 
as described above. The results of these calculations are 
collected in the matrix C. 
 Concentrations are very rarely measured directly; 
measured data are usually only indirectly related to the 
concentrations. In this contribution we discuss in some details 
two types of titrations, namely, potentiometric pH titrations 
and spectrophotometric titrations. In pH titrations the 
measurement is a vector dmeas which is a record of the pH of 
the solution. The calculated dcalc is -log([H+]), note that the 
proton concentration is collected in one particular column of 
the concentration matrix C. The data collected in 
spectrophotometric titrations are more complex and their 
analysis requires additional attention.  
 In spectrophotometric titrations, according to Beer-
Lambert's law, the relationship between the concentrations and 
the measurements can be expressed as a matrix equation 
 
 = + = +meas calcD CA R D R                                   (16) 

 
Dmeas has the dimensions nmeas × nlam, where nlam is the 
number of wavelengths at which data were acquired. The 
molar absorptivities of all species at the measured wavelengths 
are collected in a matrix A of dimensions nspec × nlam. The 
dimensions of the matrix C are nmeas × nspec. 
 The parameters describing the chemical model are 
collected in a vector  par in  Eq. (14).  The  matrix A  of molar 

 
 
absorptivities that relates the concentrations to the 
measurement are linear parameters. The non-linear parameters 
par require an iterative algorithm that starts with initial 
guesses and, hopefully, converges towards the optimal 
solution in a reasonable number of iterations and amount time. 
Linear parameters can be 'fitted' in explicit equations, so that 
no iterative process is required. Given Dmeas and C, the best 
estimate for A can be calculated explicitly as: 
 
 += measA C D                                 (17) 

 
C+ is called the pseudo inverse of C. (C+ can be calculated as 
C+ = (CtC)-1Ct but there are numerically better algorithms 
available [4-6]. 
 Multivariate, or multi-wavelength data are modelled by 
both non-linear and linear parameters; usually by a few non-
linear ones, the vector par, and many linear ones, the matrix A 
in Eq. (16). It is crucial to deal with them separately, 
iteratively refining only the non-linear parameters while 
dealing with the linear ones with explicitly. As demonstrated 
in Eq. (18), ssq can be defined as a function of the non-linear 
parameters par only; the linear parameters are effectively 
eliminated. 
 

 

2
,

(model, )

(model, )i j
i j

f

ssq R f

=

=

= − = −

= =∑∑

+
meas

+
meas meas meas

C par
A C D
R D CA D CC D

par

                           (18) 

 
The non-linear parameters to be fitted are the equilibrium 
constants of the considered system that define the matrix of 
concentration profiles C. The equilibrium constants are refined 
so as to minimize the sum of squares of the residuals matrix, 
ssq.  
 The least-squares fitting of non-linear parameters is 
necessarily an iterative process. There are several algorithms 
available for that task. The most commonly used one is 
Newton-Gauss method [4,7]. There are algorithms that are 
conceptually simpler, but in very few instances are such 
alternatives more efficient.  
 The Newton-Gauss method is fast, relatively 
straightforward to implement and it delivers estimates  for  the  
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standard deviations of the fitted parameters. The equations 
governing the Newton-Gauss algorithm are based on a 
truncated Taylor series expansion of the sum-of-squares as a 
function of the parameters. The Newton-Gauss algorithm for 
ssq minimization requires the computation of the derivatives 
of the residuals with respect to the parameters. These 
derivatives are collected in the Jacobian J. Again, we refer to 
more specialised text for more extensive explanations [4,7]. 
 
 δ

=
δ
RJ
par

                                         (19) 

 
The computation of J is relatively time consuming but the 
reward is the speed of convergence which is quadratic close to 
the minimum. For equilibrium investigations it is usually 
possible to compute the Jacobian explicitly [4], however, it is 
always possible to approximate J numerically: 
 
 ( ) ( )i

i i

par
par par

+ Δ −δ
≅

δ Δ
R par R parR                                 (20) 

 
In this equation (par +Δpari) is a new parameter vector with 
only the i -the parameter pari shifted by the small amount 
Δpari. Typically Δpari is calculated as 1 × 10-4 pari. 
 The iterative refinement of the parameters is given by the 
following formula. The shift vector Δpar is computed and 
added to the vector par.  

 
 += −Δpar J R                                  (21) 

Usually this results in convergence, and the minimum in ssq is 
reached in a few iterations. The test for convergence is 
performed by comparing the calculated ssq with the value 
from the previous iteration. If improvement is below a certain 
threshold, i.e. the shift in the parameters resulted in no further 
improvement of the ssq value, then the process is terminated 
and the results are reported. In the case of divergence (increase 
in ssq from one the next iteration) the well-proven Marquardt-
Levenberg algorithm is invoked [4-6]. The pseudo-inverse J+ 
is calculated as J+ = (JtJ)-1Jt and the Marquardt parameter mp 
is added to the diagonal elements of (JtJ) prior to inversion. 
Increasing the Marquardt parameter shortens the shift vector 
and directs it to the direction of steepest descent. 
 An   additional   useful   property   of   the   Newton-Gauss 

 
 
algorithm is that it allows direct estimation of the errors in the 
non-linear parameters [7]. The inverted Hessian matrix H-1 = 
(JtJ)-1, without the Marquardt parameter added, is the 
variance-covariance matrix of the parameters. The diagonal 
elements contain information on the parameter variances and 
the off-diagonal elements the covariances. The standard error 
σpar of the fitted parameters pari can be estimated from the 
expression: 
 

,ipar R i idσ = σ                                   (22) 

 
where di,i is the i-th diagonal element of the inverted Hessian 
matrix H-1. σَR represents the estimated standard deviation of 
the measurement error in Dmeas or dmeas. 
 
 

R
ssq
df

σ =                                          (23) 

 
where df is the degree of freedom, which is defined as the 
number of experimental values m (elements of D or d), 
subtracted by the number of optimised parameters np, df  = m - 
np. 
 Figure 3 is a flow diagram showing the Newton-Gauss-
Levenberg/Marquardt (NGL/M) method [4]. 
 It is worth noting that the determination of the correct 
chemical model for a given measured process is a completely 
different and a much more difficult task than fitting the 
parameters of a given model. There are so-called model free 
analysis methods which can be applied to the 
spectrophotometric titrations which can give some preliminary 
insight into the complexity of the data. In some instances it is 
possible to get good estimates for the concentration profiles 
and the absorption spectra of the interacting species. As 
before, we refer to the original literature for more details. 
 One thing, however, is clear from the beginning: the 
smaller the number of parameters, the easier the task of fitting 
them. And this is why it is so important to separate the linear 
from the non-linear parameters, as described in Eq. (18). 
 
APPLICATIONS 

 
 In this section a number of examples are given where the 
techniques described have been applied to three simulated data  
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sets. Each example will be used to highlight particular 
application of the non-linear fitting in chemical equilibria 
systems.  
 
Example 1: Bi3+ and Cl- 
 The first example is a spectrophotometric titration of a 2-
component system. It is the complexation of Bi3+ by chloride 
ions in aqueous solution. The example is taken from a 
previous paper [8]. The chloride ion does not act as a base in 
water and thus the complexation reaction is a pure Lewis acid-
base interaction. Bi3+ forms octahedral complexes and thus we 
can expect the step wise complexation of 1 to 6 chlorides. 
Thus there are 2 components (Bi3+, Cl-) and altogether 8 
species (Bi3+, Cl-, BiCl2+, BiCl2

+, BiCl3, BiCl4
-, BiCl5

2- and 
BiCl6

3-). 
 The data were generated using formation constants that 
approximate the ones determined before [8] (logβ11 = 2.35, 
logβ12 = 4.4, logβ13 = 5.45, logβ14 = 6.65, logβ15 = 7.29, logβ16 

= 7.06). The molar absorption spectra  of the  Bi-species  were  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gaussian curves which are similar to the spectra determined in 
[8]. The concentration profiles, the matrix C, and spectra, the 
matrix A, are shown in Fig. 4. 
 Data were generated using Eq. (16) and white noise with a 
realistic standard deviation of 0.002 was added. The resulting 
matrix Dmeas is displayed in Fig. 5. The details of the titrations 
such as initial volumes, added volumes, concentrations etc. 
can be found in the Matlab files supplied by the authors, see 
end of paper. 
 Fitting of the data using the correct model and approximate 
initial guesses for the formation constants results in the 
formation constants listed in Table 2. As can be seen, all true 
constants are within the error limits of the fitted values. The 
numbers in brackets are 2 standard deviations as defined by 
Eq. (22).  
 The fitted spectra are essentially correct, they are however 
influenced by the noise of the measurements. The residuals are 
normally distributed and the standard deviation, Eq. (23), is 
correct within the error limits. 

mp=0

guess parameters, par=parstart
initial value for mp

calculate residuals, r(par)
and the sum of squares, ssq

calculate Jacobian J

calculate shift vector δpar, and
par = par + δpar

end;
display resultsssqold <≈> ssq mp=0

mp/3mp×5

< ≈

>

yes

no

mp=0

guess parameters, par=parstart
initial value for mp

calculate residuals, r(par)
and the sum of squares, ssq

calculate Jacobian J

calculate shift vector δpar, and
par = par + δpar

end;
display resultsssqold <≈> ssqssqold <≈> ssq mp=0mp=0

mp/3mp×5

< ≈

>

yes

no

 

Fig. 3. Flow diagram of the Newton-Gauss-Levenberg/Marquardt (NGL/M) method. 
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Fig. 5. (a) spectra A for the Bi-species; (b) concentration profiles C of the Bi-species as a function  
            of  log of  the  chloride concentration: (1) Bi3+, (2) BiCl2+, (3) BiCl2

+, (4) BiCl3, (5) BiCl4
-,  

            (6) BiCl5
2-, (7) BiCl6

3-. 

 

 

 
Fig. 5. Series of spectra measured as a function of addition of Cl-. 
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            Table 2. Fitted Formation Constants  and  Their  
                           True Values for the Bi3+/Cl- System 

 
 
 
 
 
 
 
 
 
 
 
Example 2: Cu2+ and Edta 
 The second example is a spectrophotometric titration that 
investigates the interactions between Cu2+ and edta in aqueous 
solution. Data were taken from a previously published paper 
[9]. As edta is a Lewis and Brønstedt base we need to include 
all protonation equilibria, thus we are dealing with a 3-
component system, Cu2+, edta4-, H+. In addition to the 
protonation  equilibria  of  edta  we  also  have   to   deal   with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
protonated and deprotonated complexes. The complete list of 
all species includes: Cu2+, edta4-, H+, edtaH3-, edtaH2

2-, 
edtaH3

-, edtaH4, edtaH+, edtaH6
2+, Cu(edta)2-, Cu(edtaH)-, 

Cu(edtaH2), Cu(edta)H-1)3- and OH-. 
 Figure 6 (a) displays the absorption spectra used for the 
different Cu-species and (b) contains their concentration 
profiles as a function of pH. Figure 7 shows the measurement, 
the collection of spectra acquired during the titration. As in the 
proceeding example, the true values for the formation 
constants are all within the error limits of the fitted values, 
they are listed in Table 3. 
 
Example 3: Zn2+ and Ethylenediamine (en) 
 The last example is a potentiometric pH titration for the 
investigation of the complexation of Zn2+ with 
ethylenediamine (en). Ethylenediamine is a bidentate ligand 
which interacts with the octahedral Zn2+ ion; it acts also as a 
base. The following species are formed: Zn2+, en, H+, enH+, 
enH2

2+, Zn(en)2+, Zn(en)2
2+, Zn(en)3

2+ and OH-. The data used 
for the generation of this measurement are taken from a 
publishe work [10]. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fitted True 

logβ11  2.37(2)   2.35 
logβ12  4.41(3) 4.4 
logβ13 5.46(6) 5.45 
logβ14 6.65(5) 6.65 
logβ15 7.29(7) 7.29 
logβ16 7.06(9) 7.06 
sig_R  0.00198   0.002 

 

 
Fig. 6. (a) spectra for the Cu-species; (b) concentration profiles of all species (except H+and 

                   OH-) as a function of pH: (1) Cu2+, (CuL), (3) CuLH, (4) CuLH2, (5) CuLH-1. 
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Table 3. Fitted Formation Constants and Their  
                           True Values for the Cu2+/edta System 

 

 

 

 

 

 
 
 Fig. 8 shows the data, part (a) is the titration curve, the 
measured pH (using •-markers and the fitted curve as a line) as 
a function of added base; (b) contains the concentration 
profiles for all species. Table 4 contains the fitted parameters 
and the ones used to generate the data. As before they all are 
within the error limits. 
 This data set only includes one titration of a solution that 
contains en and the metal. It is assumed that the protonation 
constants of en are known and can be used for the analysis of 
this titration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Fitted Formation Constants and Their 
           True Values for the Zn2+/en System 

 
 
 
 
 
 
 
 
 
 
MATLAB FILES 
 
 The collection of Matlab files that were used to generate 
the above data sets and subsequently to fit the parameters is 
available from the authors. MM: Marcel.Maeder@newcastle. 
edu.au; HA: abd@iasbs.ac.ir. These files allow the study of 
the numerical methods described in this contribution; they also 
can be adapted for the analysis of other data sets acquired in 
the laboratory. More explanations on all of the above can be 
found in reference [4]. 

 
Fig. 7. Series of spectra measured as a function of base addition in the Cu2+/edta system. 

 Fitted Ttrue 

logβ110 18.81(9) 18.8 
logβ111 21.87(6) 21.9 
logβ112 23.88(7) 23.9 
logβ11-1 11.3(4) 11.4 
sig_R 0.000496 0.0005 

 Fitted True 

logβ110 5.66(5) 5.69 

logβ120 10.66(4) 10.69 
logβ130 13.1(2) 13 

sig_R 0.019 0.02 
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Fig. 8. (a) Potentiometric titration curve; (b) Concentration profiles of all species: (1) Zn2+, (2) L, 

                  (3) H, (4) LH, (5) LH2, (6) ZnL, (7) ZnL2, (8) ZnL3, (9) OH. 


