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 The Feed-Forward Artificial Neural Networks (FFANNs) were used to predict the corrosion behavior of lead. A 3-9-2 network 
was adopted to train the networks and predict the lead corrosion behavior. The descriptors (input) were obtained using 
experimental methods. Solution concentration, pH and passive time were selected as the ANN input to predict the corrosion 
current and potential. To this end 80 samples were selected. The criterion of TSE was 0.004. It was found that the FFANNs could 
be used to predict the corrosion of lead. 
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INTRODUCTION 
 
 Corrosion protection is among the most important 
economic and safety concerns of the industrial world. To 
control corrosion effectively, the accurate prediction of 
corrosion behavior is a fundamental requirement [1]. At first 
glance, this may seem easy, but complex nature of corrosion 
mechanism does not allow to predict its behaviour, as 
expected. In recent years, soft computing techniques including 
artificial neural network (ANN), fuzzy logic (FL), 
evolutionary computation (EC), machine learning (ML) and 
probabilistic reasoning (PR) have been used to study different 
phenomena in complex systems. ANN can be used to predict 
the corrosion behavior of metals. ANN is a network of many 
simple processor or neurons, each having a small amount of 
local memory [2]. The interaction of the neurons in the 
network is roughly based on the principles of neural science. 
There are some training rules in ANNs, which are used to train 
the network based on some problems with or without known 
answers.   In   the  training  algorithm,  the  weights  are  being  
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adjusted on the basis of presented patterns of the model 
system. The ANNs are particularly suitable for problems 
where pattern recognition is important and precise 
computational answers are not required. When ANNs input 
and output contain evolved parameters, their computational 
precision and extrapolation ability significantly will increase 
and can even outperform more traditional modelling 
techniques. ANN architecture is composed of a large number 
of highly interconnected processing elements that are 
analogous to neurons and are tied together with weighted 
connections that are analogous to synapses. Each artificial 
neuron receives information usually from several sources, as 
well as the sum of input, and uses a transfer function to 
produce an output. The multiple layer feed-forward artificial 
neural network (MLFFANN) with back-propagation training 
algorithm is the most popular ANN in chemistry [2,3]. The 
process of training a network consists of adjusting the weights 
to minimize disagreement between the output of the network 
and the desired values for a set of training patterns with known 
and correct output. Some researchers attempted to apply the 
artificial neural network to predict the corrosion behaviours 
[1,4-21].  The  aim  of   the   present  work  is   to  predict   the  
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corrosion behavior of lead in acidic solutions using feed-
forward artificial neural network and multiple linear 
regressions (MLR).  
 
METHOD    
 
 In this work, a feed-forward artificial neural network 
model with the back-propagation algorithm was developed to 
predict the corrosion current and potential of lead. Polarization 
technique and Tafel curves were used to obtain the necessary 
data for training the networks.  
 
Experimental Data 
 Electrochemical measurements were carried out using 
EG&G model 273 potentiostat/galvanostat. The working 
electrode was made of lead disc with 0.5 cm2 exposing 
geometric surface. The potentials were measured against an 
Ag/AgCl saturated reference electrode with a Pt electrode 
forming the counter electrode. All measurements were carried 
out at 298 K. Potential sweep rate was 5 mV s-1. Na2SO4 used 
in this work was a Merck product. Since in corrosion behavior 
prediction Na2SO4 concentration, pH and passive time are 
independent variables, they can be selected as an ANN input. 
Corrosion potential (Ecorr) and corrosion current (Icorr) were 
obtained from Tafel curves (Figure 1a-b) and selected as an 
output of ANN (Table 1). 
 
ANN Modeling 
 FFANN was applied to predict the corrosion current and 
potential of lead in Na2SO4. To this end, a three-layer feed-
forward artificial neural network was designed to predict the 
corrosion current and potential of lead as a function of  
Na2SO4 concentration (0.1-1 M), pH (acidic and neutral) and 
passive time (0-10 s). 80 patterns were used to modeling the 
above-mentioned corrosion behavior. Stuttgart Neural 
Network Simulator (SNNS) 4.2 was used to obtain the ANN 
results [22]. All the calculations were performed on a Pentium 
IV (2 GHz) IBM-compatible machine. During the simulation, 
the total squared error was used as the criterion of the learning 
efficiency of the network in the training process. Several 
trainings with different numbers of hidden units, iterations, 
learning rate, momentum and transfer function were 
performed  to  find  the   best   architecture   of   the  ANN.  To  

 
 
Table 1. ANN Input and Output 
 

Input Output 

Na2SO4 concentration 

pH 

Corrosion current 

passive time Corrosion potential 
 
 
optimize the network structure, network pruning method was 
used. For this purpose the training was started with a network 
and slowly decreased the hidden units until hidden units 
degradation ended to a significant error. 
 
RESULTS AND DISCUSSION 
 
 The training and testing sets contain 68 and 12 patterns, 
respectively. In this work, a 3:9:2 neural network was selected 
after different tests through pruning networks approach. Initial 
connection weights were randomly selected in the range -1 to 
1. To improve the network performance, a bias was used. 
Sigmoid function was chosen as the transfer function. The 
learning rate and momentum were 0.5 and 0.4, respectively. 
To select the adequate transfer function, the learning rate and 
momentum of several trainings with different above 
mentioned parameters were performed. In each training, one 
parameter was variant and others were constant. To achieve a 
robust model, the order of patterns was randomly changed. 
The obtained results were the same. The criterion of total 
squared error was 0.004 after 72500 iterations. The root mean 
square error was 0.018. Further iterations led to the over-
fitting of the network (Fig. 2). The optimized 3:9:2 structure 
contained 3 input units, 9 hidden units and 2 output units. All 
units are connected to the next higher level which means that 
are 3 × 9 + 9 × 2 = 45 connections. Although the network was 
trained on 68 data points, its performance to predict the 
corrosion behavior of testing set was quite satisfactory. This 
proves that the network architecture was adequate and in the 
training process generalization and no memorization occurred. 
To predict the corrosion current and potential of lead, multi-
linear regression (MLR) models were also obtained. The 
aforementioned corrosion models, namely, current and 
potential are respectively defined by Eqs. 1 and 2: 
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Fig. 1. The Tafel curves in 0.1-0.6 M Na2SO4 at pH 7 (a) and pH 5 (b). 
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Fig. 2. A typical graph of the TSE against the number of  

                 Iterations: ( ) Training, (▲) Testing. 
 
 
 I corr = -1.864 × 10-2 [Na2SO4] - 3.867 × 10-3 (pH) + 8.214 ×   
                10-4 (t) + 5.476 ×10-2                                                                       (1) 
 
where the linear regression coefficients r and r2 were 0.77 and 
0.59, respectively. 
 
 E corr  = -2.539 × 10-2 [Na2SO4] - 2.815 × 10-2 (pH) + 1.862  
                  × 10-3 (t) - 0.568                                                   (2) 
 
where r and  r2  were  0.90  and  0.81,  respectively.  The  MLR  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  Table 2. The MLR Coefficients and Standard Errors for Eq. 1 
 

Coefficients Standard error 

5.476E-02 (constant) 0.003 
-1.864E-02 0.004 
-3.867E-03 0.001 
8.214E-04               0.000 

 
 
 Table 3. The MLR Coefficients and Standard Errors for Eq. 2 
 

Coefficients Standard error 

-0.568 (constant) 0.011 
-2.539E-02 0.012 
-2.815E-02 0.002 
1.862E-03 0.001 

 
 
coefficients standard error for Eqs. 1 and 2 are presented in 
Tables 2 and 3, respectively. 
 The results of the training and testing the FFANN in 
comparison with  MLR  method  are  presented  in  Tables 4-6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Table 4. The MLR and FFANN Calculated and Experimental Values of Corrosion Current and Potential for the  
                         Patterns Included in the Training Set 
 

Corrosion potential (V vs. Ag/AgCl) Corrosion current (mA) No. 
MLR ANN Exp. MLR ANN Exp. 

1 -0.7677 -0.7611 -0.7639 0.0258 0.0474 0.0482 
2 -0.7701 -0.7570 -0.7593 0.0239 0.0328 0.0326 
3 -0.7727 -0.7630 -0.7543 0.0221 0.0206 0.0214 
4 -0.7777 -0.7794 -0.7850 0.0183 0.0191 0.0187 
5 -0.7803 -0.7605 -0.7630 0.0164 0.0131 0.0114 
6 -0.7828 -0.7740 -0.7757 0.0146 0.0226 0.0246 
7 -0.7853 -0.8037 -0.8021 0.0127 0.0201 0.0213 
8 -0.7879 -0.8158 -0.8353 0.0108 0.0192 0.0182 
9 -0.7904 -0.8304 -0.8301 0.0089 0.0196 0.0201 
10 -0.7490 -0.7107 -0.6748 0.0340 0.0168 0.0161 
11 -0.7540 -0.7235 -0.7421 0.0303 0.0151 0.0157 
12 -0.7616 -0.7474 -0.7877 0.0265 0.0114 0.0138 
13 -0.7591 -0.7667 -0.7359 0.0247 0.0118 0.0121 
14 -0.7642 -0.7809 -0.7814 0.0228 0.0125 0.0134 
15 -0.7667 -0.7966 -0.7890 0.0209 0.0098 0.0079 
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            Table 4. Continued 
 

16 -0.7692 -0.8113 -0.8237 0.0190 0.0143 0.0144 
17 -0.7718 -0.8269 -0.8245 0.0179 0.0186 0.0188 
18 -0.7113 -0.7336 -0.7405 0.0335 0.0449 0.0498 
19 -0.7138 -0.7355 -0.7369 0.0317 0.0321 0.0330 
20 -0.7163 -0.7363 -0.7345 0.0298 0.0262 0.0241 
21 -0.7189 -0.7357 -0.7412 0.0279 0.0212 0.0225 
22 -0.7239 -0.7328 -0.7341 0.0242 0.0148 0.0137 
23 -0.7265 -0.7307 -0.7412 0.0223 0.0265 0.0284 
24 -0.7316 -0.7381 -0.7310 0.0186 0.0191 0.0189 
25 -0.7341 -0.7488 -0.7265 0.0167 0.0220 0.0219 
26 -0.6927 -0.7052 -0.7095 0.0417 0.0493 0.0503 
27 -0.6952 -0.7005 -0.7043 0.0399 0.0401 0.0426 
28 -0.6977 -0.6980 -0.7014 0.0379 0.0321 0.0317 
29 0.7002 -0.7104 -0.7125 0.0361 0.0343 0.0333 
30 -0.7028 -0.7019 -0.7064 0.0343 0.0246 0.0244 
31 -0.7053 -0.7071 -0.7180 0.0324 0.0281 0.0269 
32 -0.7079 -0.7135 -0.7001 0.0305 0.0387 0.0395 
33 -0.7104 -0.7145 -0.7082 0.0286 0.0405 0.0429 
34 -0.7129 -0.7138 -0.7139 0.0268 0.0340 0.0354 
35 -0.7155 -0.7064 -0.7053 0.0249 0.0309 0.0300 
36 -0.6550 -0.6528 -0.6365 0.0412 0.0501 0.0518 
37 -0.6575 -0.6462 -0.6365 0.0394 0.0383 0.0351 
38 -0.6601 -0.6388 -0.6417 0.0375 0.0301 0.0303 
39 -0.6651 -0.6325 -0.6288 0.0337 0.0209 0.0201 
40 -0.6677 -0.6305 -0.6223 0.0319 0.0161 0.0145 
41 -0.6702 -0.6411 -0.6415 0.0300 0.0328 0.0320 
42 -0.6728 -0.6280 -0.6359 0.0281 0.0299 0.0309 
43 -0.6753 -0.6275 -0.6149 0.0263 0.0210 0.0200 
44 -0.6778 -0.6463 -0.6490 0.0244 0.0239 0.0241 
45 -0.6364 -0.6018 -0.6144 0.0494 0.0541 0.0542 
46 -0.6389 -0.6001 -0.6032 0.0475 0.0522 0.0564 
47 -0.6414 -0.6028 -0.6135 0.0457 0.0416 0.0436 
48 -0.6440 -0.6102 -0.6133 0.0439 0.0408 0.0399 
49 -0.6465 -0.6177 -0.6111 0.0420 0.0418 0.0419 
50 -0.6516 -0.6240 -0.6040 0.0382 0.0443 0.0491 
51 -0.6541 -0.6038 -0.6098 0.0364 0.0393 0.0360 
52 -0.6567 -0.6089 -0.6040 0.0345 0.0438 0.0464 
53 -0.6592 -0.6101 -0.6034 0.0326 0.0412 0.0403 
54 -0.5986 -0.6179 -0.6181 0.0489 0.0625 0.0607 
55 -0.6012 -0.6201 -0.6243 0.0471 0.0519 0.0536 
56 -0.6037 -0.6208 -0.6271 0.0452 0.0376 0.0386 
57 -0.6030 -0.6225 -0.6233 0.0434 0.0291 0.0273 
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           Table 4. Continued 
 

58 -0.6113 -0.6281 -0.6248 0.0396 0.0198 0.0193 
59 -0.6139 -0.6310 -0.6334 0.0377 0.0418 0.0467 
60 -0.6190 -0.6287 -0.6287 0.0340 0.0245 0.0212 
61 -0.6215 -0.6242 -0.6232 0.0321 0.0231 0.0265 
62 -0.5800 -0.6368 -0.6239 0.0571 0.0632 0.0464 
63 -0.5826 -0.6276 -0.6327 0.0553 0.0611 0.0621 
64 -0.5851 -0.6230 -0.6264 0.0534 0.0486 0.0475 
65 -0.5927 -0.6190 -0.6218 0.0478 0.0491 0.0481 
66 -0.5953 -0.6187 -0.6192 0.0459 0.0525 0.0541 
67 -0.5978 -0.6181 -0.6243 0.0440 0.0497 0.0491 
68 -0.6029 -0.6141 -0.6128 0.0403 0.0429 0.0427 

 
 
     Table 5. The MLR and FFANN Calculated and Experimental Values of Corrosion Current and Potential for Testing Set 
 

Corrosion potential (V vs. Ag/AgCl) Corrosion current (mA) No. 
MLR ANN Exp. MLR ANN Exp. 

1 -0.7752 -0.7698 -0.7641 0.0201 0.0202 0.0206 
2 -0.7515 -0.7411 -0.7498 0.0321 0.0118 0.0113 
3 -0.7566 -0.7380 -0.7401 0.0284 0.0138 0.0143 
4 -0.7214 -0.7237 -0.7298 0.0260 0.0197 0.0195 
5 -0.7291 -0.7130 -0.7118 0.0204 0.0221 0.0243 
6 -0.6626 -0.6350 -0.6440 0.0356 0.0235 0.0257 
7 -0.6491 -0.6038 -0.6075 0.0401 0.0447 0.0457 
8 -0.6088 -0.6207 -0.6239 0.0415 0.0241 0.0223 
9 -0.6164 -0.6301 -0.6288 0.0358 0.0374 0.0372 
10 -0.5876 -0.6228 -0.6264 0.0516 0.0460 0.0452 
11 -0.5902 -0.6232 -0.6237 0.0497 0.0448 0.0431 
12 -0.6003 -0.6216 -0.6287 0.0422 0.0471 0.0459 

 
       
           Table 6. The FFANN Obtained Data in Comparison with MLR Method Results for Testing Set 
 

Corrosion potential (V vs. Ag/AgCl)  Corrosion current (mA) No. 
Exp. ∆ANN ∆MLR Exp. ∆ANN ∆MLR 

1 -0.7641 0.0057 0.0111 0.0206 0.0004 0.0005 
2 -0.7498 -0.0087 0.0017 0.0113 -0.0005 -0.0208 
3 -0.7401 -0.0021 0.0165 0.0143 0.0005 -0.0141 
4 -0.7298 -0.0061 -0.0084 0.0195 -0.0004 -0.0065 
5 -0.7118 0.0012 0.0173 0.0243 0.0022 0.0039 
6 -0.6440 -0.0090 0.0186 0.0257 0.0022 -0.0099 
7 -0.6075 -0.0037 0.0416 0.0457 0.0010 0.0056 
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The plots of the FFANN results to predict the corrosion 
current and potential vs. experimental values for training and 
testing set are shown in Figs. 3-6. The achieved points are 
distributed around the trend line. The mentioned concentrated 
distribution illustrated the low difference between the 
predicted and experimental values. The accurate prediction 
shows the efficiency of selected FFANN. The results in tables 
4-6 revealed that the FFANN results are better than those of 
the MLR methods. The results clearly demonstrate the ability 
and adequacy of the chosen architecture in above mentioned 
corrosion behavior prediction. 
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Fig. 3. Calculated Icorr vs. experimental values for training set. 
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Fig. 5. Calculated Icorr vs. experimental values for testing set. 
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Fig. 6. Calculated Ecorr vs. experimental values for testing set. 
 
 
 
CONCLUSIONS  
 
 It was found that feed-forward artificial neural networks 
result in suitable methods to predict the lead corrosion 
behavior in Na2SO4 solutions. The obtained data illustrate the 
priority of FFANN over MLR method in lead corrosion 
behavior prediction. A comparison between the two methods 
revealed that the corrosion behavior of lead is not linear; thus, 
the use of a non-linear transfer function gives better results. 

  Table 6. Continued 
 

8 -0.6239 -0.0032 -0.0151 0.0223 -0.0018 -0.0192 
9 -0.6288 0.0013 -0.0124 0.0372 -0.0002 0.0014 
10 -0.6264 -0.0036 -0.0388 0.0452 -0.0008 -0.0064 
11 -0.6237 -0.0005 -0.0335 0.0431 -0.0017 -0.0066 
12 -0.6287 -0.0071 -0.0284 0.0459 -0.0012 0.0037 
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