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 The non-rigid molecule group theory in which the dynamical symmetry operations are defined as physical operations is 
applied to deduce the character Table of the full non-rigid molecule group (f-NRG) of TBA. The f-NRG of this molecule is seen 
to be a group of order 54 which has 27 conjugacy classes.  
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INTRODUCTION 
 
 A non-rigid molecule is a molecular system which presents 
large amplitude vibration modes. This kind of motion appears 
whenever the molecule possesses various isoenergetic forms 
separated by relatively low-energy barriers. In such cases, 
intermolecular transformations occur.   
     Following Smeyers [1,2], the complete set of the molecular 
conversion operations that commute with the nuclear motion 
operator will contain overall rotation operations  that describe 
the molecule rotating as a whole, and intermolecular motion 
operations that describe molecular moieties moving with 
respect to the rest of the molecule. Such a set forms a group, 
which we call the full non-rigid molecule group (f-NRG).  
Stone [3] has described a method which is appropriate for 
molecules with a number of XH3 groups attached to a rigid 
framework. An example of such molecules is TBA, which is 
considered in some detail. Although this method is not 
appropriate in cases where the framework is linear, as in 
ethane and dimethylacetylene, Bunker [4] has shown how to 
deal with such molecules. For computing the character Table 
of TBA molecule, we use some previously reported methods 
[5-6] for the standard notation  and  terminology  on  character 
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theory.  
 In a series of papers [7-15], Balasubramanian has 
computed full non-rigid group of some molecules. For 
example, he computed the full non-rigid group for 1,3,5-
triamino-2,4,6-trinitrobenzene [10], water pentamer [13]  and 
extended aromatic C48N12 azafullerene [14]. Also Ashrafi and 
coauthors [16-25] computed full non-rigid group of some 
molecules. For example they computed the full non-rigid 
group of tetraammine platinum(II) [16], cis- and trans-
dichloro-diammine platinum(II) and trimethylamine [17], 
tetraammine platinum(II) with C2v and C4v point group [19], 
tetraamine platinum(II) as wreath product [21], tetra-tert-
butyltetrahedrane [22], tetramethylethylene [23], hexamethyl-
benzene [24] and melamine [25].  
 In this paper the full non-rigid group of TBA is computed. 
Firstly the algebraic structure of the full non-rigid group of 
TBA is specified. Then, based on the structure of the group, a 
useful programming language, namely GAP [26], is applied 
and the character Table of f-NRG of this molecule is 
computed. The GAP package is used to find many properties 
of the groups.  
 The motivation for this study is outlined in previous 
publications [7-25] and the readers are encouraged to consult 
these papers for background material as well as basic 
computational techniques. 
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METHODOLOGY 
 

Firstly, we describe briefly some notation which will be 
used in the paper. A subgroup N of a group G is called normal 
if for any g∈G and x∈N, g-1xg∈N. Two elements x and y are 
said to be conjugate in G if there is an element g of G such 
that y = g-1xg. For brevity, we write xg: = g-1xg. It is easy to 
see that (xy)g = xgyg, (xg)h = xgh and (x-1)g = (xg)-1, for all x,y,g, 
h∈G. The conjugacy class of x is the set of all conjugates of x 
in G, denoted by ClG(x). The element x is called a 
representative of ClG(x). It is well known that |ClG(x)| = 
|G|/|CG(x)|, where CG(x) = {g∈G | xg = gx} is the centralizer 
of x in G. The set of all conjugacy classes form a partition of 
G, so if ClG(x1), ClG(x2), …, ClG(xr) are all distinct conjugacy 
classes of G , then ∑

=

=
r

G
1i

iG |)(xCl||| .  

 Suppose X is a set. The set of all permutations on X, 
denoted by SX, is a group under the composition of functions, 
which is called the symmetric group on X. In the case that, X 
= {1, 2, …, n}, we denote SX by Sn or Sym(n). Every element 
π of Sn can be written uniquely as a product of disjoint cycles.  
If π is written as the product of m1, m2, …, ms cycles of length 
n1, n2,…, ns, respectively, we say that π has cycle type m1

n1 
m2

n2… ms
ns. Two elements of Sn are conjugate in Sn if and 

only if they have the same cycle type.  
Now consider the point group of the molecule in the case 

of a rigid framework. We consider the full non-rigid group G 
(f-NRG) of this molecule, each equilibrium conformation of 
which has an ordinary point group symmetry Cs. Since G is a 
permutation group, every two elements of this group with 
different cycle structure belong to different conjugacy classes 
of G. Referring to Fig. 1, the cycle structure of the 
representatives of the conjugacy classes of G is given. The 
permutations  
 
 x = (7,8,9),  y = (10,11,12) and z = (13,14,15)  

 
rotate three methyl groups and the permutation and  
 
 w = (7,10)(9,11)(8,12)(13,15)(2,3) 

 
(which is the reflection to plane containing  the atoms 1, 4, 5, 
6 and 14) are elements of G and  generate  the  point  group  of 

 
 

 
Fig. 1. The structure of TBA. 

 
 
 the molecule, that is G = <x, y, z, w>. At this time, we can 
use the GAP package and calculate the size and conjugacy 
classes of G. But in order to find conjugacy classes of G we 
may argue as follows. Since x, y, z are disjoint permutations, 
they commute with each other. Now since  
 
 xw = (10,12,11) = y-1, yw = (7,9,8) = x-1 and zw = (13,15,14)  
      = z-1, we have  
 
 ClG(x) = {x,y-1}, ClG(y) = {y,x-1} and ClG(z) = {z,z-1} 

 
Similarly using the identities  
 
 (xy)w = xwyw = x-1y-1,            (x-1y-1)w = (x-1)w(y-1)w = xy,                  
 (xz)w = xwzw = y-1z-1,             (y-1z-1)w = (y-1)w(z-1)w =xz,        
 (yz)w = ywzw = x-1z-1,              (x-1z-1)w = (x-1)w(z-1)w = yz, 
 (x-1z)w = (x-1)wzw = yz-1,         (yz-1)w = yw(z-1)w = x-1z,       
 (xz-1)w = xw(z-1)w = y-1z,        (y-1z)w = (y-1)wzw = xz-1,    
 (xyz)w = xwywzw = x-1y-1z-1,   (x-1y-1z-1)w = (x-1)w(y-1)w(z-1)w  
      = xyz,  
 (x-1yz)w = (x-1)wywzw = x-1yz-1,  (x-1yz-1)w = (x-1)wyw(z-1)w =  
      x-1 yz,   
 (xy-1z)w = xw(y-1)wzw = xy-1z-1, (xy-1z-1)w = xw(y-1)w(z-1)w =  
      xy-1z,   
 (xyz-1)w = xwyw(z-1)w = x-1y-1z, (x-1y-1z)w = (x-1)w(y-1)wzw = 
      xyz-1,    
      (x-1y)w = (x-1)wyw = x-1y,                
      (xy-1)w=xw(y-1)w = xy-1,   
we have  

ClG(xy) = {xy,x-1y-1},           ClG(xz) = {xz,y-1z-1},   ClG(yz) 
= {yz,x-1z-1},                         ClG(x-1z) = {x-1z, yz-1}, 
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ClG(xz-1) = {xz-1, y-1z },        ClG(xyz) = {xyz, x-1y-1z-1},   
ClG(x-1yz) = {x-1yz, x-1yz-1}, 

 ClG(xy-1z) = {xy-1z, xy-1z-1}, ClG(xyz-1) = {xyz-1, x-1 y-1z},              
      ClG(x-1y) = {x-1y}, ClG(xy-1) = {xy-1} 
 
 It is easy to see that every conjugacy class of a non-
identity element xcydze, where c,d,e∈{-1,0,1}, is in the set of 
15 conjugacy classes which we found asbove. Therefore G has 
12 conjugacy classes of size 2 and 3 conjugacy clasess of size 
1. From these conjugacy classes we see that G has 6 elements 
of cycle type 31, 12 elements of cycle type 32 and 8 elements 
of cycle type 33.  
 Similar arguments show that the elements w, xw and yw 
have distinct conjugacy classes of size 9. These conjugacy 
classes have 9 elements of cycle type 25 and 18 elements of 
cycle type 2261. Simple calculations show that G has no 
conjugacy classes other than above conjugacy classes. So G 
has exactly 18 conjugacy classes. Since the set of conjugacy 
classes form a partition of G, we have |G| = 3+12*2+3*9 = 54.  
 We can summarize above results in Tables 1 and 2. The 
cycle types of non-identity elements of G are listed in Table 1. 
The representative and size of the conjugacy classes of G is 
given in Table 2.  Note that we can do all of our computations 
by GAP [26]. 
 
RESULTS AND DISCUSSION 
 
 Let N be a normal subgroup of a group K. It is a well 
known fact that if η is a character of the factor group K/N, 
then the function χ defined by χ(k) = η(Nk) is a character of K, 
and χ and η have the same degree. In this case χ is an 
irreducible character of K if and only if η is an irreducible 
character of K/N (see [32, p. 24]). The Character χ of K is 
called the lifting of η to K. Thus using normal subgroups we 
can find some irreducible characters of K. This process is 
called lifting. Also it is well known that linear characters are 
obtained by lifting the irreducible characters of the factor 
group K modulus D, derived subgroup of K (see [5, p. 25]).  
Recall that the derived subgroup of K is the subgroup 
generated by all elements u-1v-1uv, where u, v∈K, that is D =< 
u-1v-1uv|u, v∈K>.  
     In this section we find irreducible characters of G and 
relations between them. Since G has 18  conjugacy  classes,  it  

 
 
possesses 18 irreducible characters. We can find character 
Table of G using GAP. In Table 3, where the complete 
character Table of G is presented, the first row consists of 
representatives of each conjugacy class, but this time in the 
GAP notation a representative g is shown by the order of the 
element g. For example if an element g has order n, then its 
class is denoted by nx, where x runs over the letters a, b, etc. 
to denote the consecutive classes of elements  of  order n.  If g 
belongs to the class nx and if m is 2, 3 or 5, then gm belongs 
to a class of elements of order n/(n,m), where (n,m) denotes 
the greatest common divisor of n and m, which are  given  in a 
column above nx. The values of the irreducible characters χi, 1 
≤ i ≤ 18, at each class occupies the rest of Table 3. Note that In 
Table 3, /X denotes the complex conjugate of X. Also, the 
values A, B are as follows:  
 
 A = (-1-i√3) ⁄ 2 = ε2, B = -1+i√3 = 2ε, where ε = e2πi/3 and i  
      = √-1 
 

Recall that for any element k of a group K we have |CK(k)| 
= |K|/|ClK(k)|, where CK(k) is the centralizer of k in K and 
ClK(k) is the conjugacy class containing k. If the number of 
conjugacy classes of K is t, then the conjugacy vector of K is a 
vector with t array such that every array is a conjugacy length 
for K. Similarly we can define centralizer vector of K. Now 
we find these vectors for full non-rigid group of the molecule. 
Suppose that V be conjugacy vector and U be centralizer 
vector of this group. Then we have 

 
 V = (1a, 3a, 3b,  3c, 3d, 3e, 3f, 3g, 3h,  3i, 3j, 3k, 3l, 3m,                      
      3n, 2a,  6a,  6b) 
 U = (54, 27, 27, 27, 27, 27, 27, 27, 54, 27, 27, 27, 27, 54,  
      27, 6, 6, 6). 
 
       In order to find relations between irreducible characters of 
G we may argue as follows. Firstly we find linear characters of 
G. It is easy to see that the derived subgroup of G is D = 
<xy,z> = <(7,8,9)(10,11,12),(13,14,15)>. Since the size of 
factor group G modulus D is 6, G has exactly 6 irreducible 
characters of degree 1 (linear characters). Let us denote these 
characters by χ1, χ2, χ3, χ4, χ5, and χ6. Since the factor group 
G/D is a cyclic group of size 6, the set of all of linear 
irreducible  characters  of  G  is  a  cyclic  group of  size  6 and  
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generated by χ3. We have χ2 = (χ3)3, χ4 = (χ3)5, χ5 = (χ3)4, χ6 = 
(χ3)2. Now put  
 

A1 = < (10,11,12), (7,8,9)(10,11,12)> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A2 = < (7,8,9)(10,12,11), (13,15,14)> 
A3 = < (7,8,9)(10,12,11), (7,8,9)(10,11,12)(13,15,14)> 
A4 = < (7,8,9)(10,12,11), (7,9,8)(10,12,11)(13,15,14)>. 

The subgroups Ai , i∈{1,…,4},   are  normal  subgroups  of  G, 

Table 1. The Cycle Type of Non-Identity Elements of Full Non-Rigid Group of TBA 
 

Cycle type 31 32 33 25 2261 

size 6 12 8 9 18 
 

            Table 2. Representative and Sizes of the Conjugacy Classes of Full Non-Rigid Group of TBA 
 

No. Representative Size No. Representative Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 

() 
(13,14,15) 
(10,12,11) 
(10,12,11)(13,14,15) 
(10,12,11)(13,15,14) 
(10,11,12) 
(10,11,12)(13,14,15) 
(10,11,12)(13,15,14) 
(7,8,9)( 10,12,11) 

1 
2 
2 
2 
2 
2 
2 
2 
1 

10 
11 
12 
13 
14 
15 
16 
17 
18 

(7,8,9)( 10,12,11)( 13,14,15) 
(7,8,9)( 10,11,12) 
(7,8,9)( 10,11,12)( 13,14,15) 
(7,8,9)( 10,11,12)( 13,15,14) 
(7,9,8)( 10,11,12) 
(7,9,8)( 10,11,12)( 13,14,15) 
(7,10)(8,12)(9,11)(14,15)(2,3) 
(7,10,8,12,9,11)(14,15)(2,3) 
(7,10,9,11,8,12)(14,15)(2,3) 

2 
2 
2 
2 
1 
2 
9 
9 
9 

 
 
     Table 3. Character Table of Full Non-Rigid Group of TBA  
 

 
2P 
3P 
5P 

1a 
1a 
1a 
1a 

3a 
3a 
1a 
3a 

3b 
3e 
1a 
3e 

3c 
3g 
1a 
3g 

3d 
3f 
1a 
3f 

3e 
3b 
1a 
3b 

3f 
3d 
1a 
3d 

3g 
3c 
1a 
3c 

3h 
3m 
1a 
3m 

3i 
3n 
1a 
3n 

3j 
3j 
1a 
3j 

3k 
3k 
1a 
3k 

3l 
3l 
1a 
3l 

3m 
3h 
1a 
3h 

3n 
3i 
1a 
3i 

2a 
1a 
2a 
2a 

6a 
3h 
2a 
6b 

6b 
3m 
2a 
6a 

 
χ1 

χ2 
χ3 
χ4 

χ5 
χ6 
χ7 

χ8 
χ9 
χ10 

χ11 
χ12 
χ13 

χ14 
χ15 
χ16 

χ17 
χ18  

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
-1 
-1 
-1 
2 
-1 
-1 
-1 
-1 
-1 
-1 
2 
2 

1 
1 
A 
/A 
A 
/A 
2 
-1 
-1 
-1 
B 
/B 
-/A 
-A 
-/A 
-A 
-/A 
-A 

1 
1 
A 
/A 
A 
/A 
-1 
2 
-1 
-1 
-/A 
-A 
B 
/B 
-/A 
-A 
-/A 
-A 

1 
1 
A 
/A 
A 
/A 
-1 
-1 
2 
-1 
-/A 
-A 
-/A 
-A 
B 
/B 
-/A 
-A 

1 
1 
/A 
A 
/A 
A 
2 
-1 
-1 
-1 
/B 
B 
-A 
-/A 
-A 
-/A 
-A 
-/A 

1 
1 
/A 
A 
/A 
A 
-1 
-1 
2 
-1 
-A 
-/A 
-A 
-/A 
/B 
B 
-A 
-/A 

1 
1 
/A 
A 
/A 
A 
-1 
2 
-1 
-1 
-A 
-/A 
/B 
B 
-A 
-/A 
-A 
-/A 

1 
1 
/A 
A 
/A 
A 
2 
2 
2 
2 
/B 
B 
/B 
B 
/B 
B 
/B 
B 

1 
1 
/A 
A 
/A 
A 
-1 
-1 
-1 
2 
-A 
-/A 
-A 
-/A 
-A 
-/A 
/B 
B 

1 
1 
1 
1 
1 
1 
2 
-1 
-1 
-1 
2 
2 
-1 
-1 
-1 
-1 
-1 
-1 

1 
1 
1 
1 
1 
1 
-1 
2 
-1 
-1 
-1 
-1 
2 
2 
-1 
-1 
-1 
-1 

1 
1 
1 
1 
1 
1 
-1 
-1 
2 
-1 
-1 
-1 
-1 
-1 
2 
2 
-1 
-1 

1 
1 
A 
/A 
A 
/A 
2 
2 
2 
2 
B 
/B 
B 
/B 
B 
/B 
B 
/B 

1 
1 
A 
/A 
A 
/A 
-1 
-1 
-1 
2 
-/A 
-A 
-/A 
-A 
-/A 
-A 
B 
/B 

1 
-1 
-1 
-1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
-1 
-A 
-/A 
A 
/A 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
-1 
-/A 
-A 
/A 
A 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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and the factor groups G modulus these subgroups are 
isomorphic to S3, the symmetric group on three symbols.  
 Since S3 has one irreducible character of degree 2, we 
obtain four irreducible characters of G by lifting the 
irreducible character of S 3  of degree 2 to G. We denote these 
irreducible characters by χ7, χ10, χ8 and χ9, respectively. If φ is 
a linear character of G, then the product φχi, i = 7, 8, 9, 10 are 
irreducible characters of G of degree 2. Using this fact, we can 
find all irreducible characters of G of degree 2. These 
characters are χ11 = χ7 χ4, χ12 = χ7 χ3, χ13 = χ8 χ4, χ14 = χ8 χ3, χ15 = 
χ9 χ4, χ16 = χ9 χ3, χ17 = χ10 χ4 and χ18 = χ10 χ3. Our calculations 
are summarized in Table 3.  
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