JOURNAL OF THE Iranian Chemical Society

A Novel Hybrid Material Based on Two Symmetrically Independent *Keggin* Polyoxoanions: [NH₃-CH(CH₃)COOH][H₃O]₈[PMo₁₂O₄₀]₃.4NH₃CH(CH₃)COO

M. Pourayoubi and A.R. Mahjoub*

Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran

(Received 20 September 2007, Accepted 27 October 2007)

Novel polyoxometalate-based organic-inorganic hybrid [NH₃-CH(CH₃)COOH][H₃O]₈[PMo₁₂O₄₀]₃.4NH₃CH(CH₃)COO was synthesized and characterized by ³¹P, ¹H, ¹³C NMR and IR spectroscopies, elemental analysis and single crystal X-ray determination. Two of the PMo₁₂O₄₀³⁻ anions in the title hybrid are symmetrically equivalent. They are crystallographically independent from the third PMo₁₂O₄₀³⁻ polyoxoanion, in the case of various interactions with neighboring components in the crystal network (*i.e.* ⁺NH₃-CH(CH₃)-COOH and H₃O⁺ cations, ⁺NH₃CH(CH₃)COO⁻ zwitterions and polyoxoanions). The compound crystallizes in an orthorhombic C222 space group with *a* = 16.0392(16) Å, *b* = 34.480(4) Å, *c* = 12.8968(13) Å and Z = 2.

Keywords: Hybrid material, Symmetrically independent Keggin polyoxoanions, Crystal structure, Alanine

INTRODUCTION

It has been shown that many different structures and extent properties for polyoxometalate (POM) compounds [1-3] and POM-based organic inorganic hybrids [4,5] have attracted much interest in crystal engineering [6,7]. The synthetic design of hybrid materials remain as a challenging task in material chemistry, since evolution of a hybrid material gives information on synthesizing new solids with unique structures and properties. Studies on design, synthesis and application of composite materials, which are based on the nanosized discrete metal-oxygen cluster anions (polyoxometalates), have been reported [8-11].

The POM-based organic-inorganic hybrids are important due to their applications to catalysis, sorption, electrical conductivity, magnetism, and photochemistry [12,13]. The use of some molecules having potential ability to produce various

interactions H-bonding with non-covalent and polyoxometalates is a method of approaching design [14,15]. Different orientation and shuffling resulting from non-rigid units in some molecules and salts and the presence of different H-bonds or other short contacts may result in two or more conformers in solid state [16-18]. In the previous studies, we reported on the structures of Na₃PMo₁₂O₄₀.16H₂O, $[C_{2}H_{6}NO_{2}]_{3}[PMO_{12}O_{40}].5H_{2}O$ and $[C_{8}H_{10}N_{5}][H_{2}PMO_{12}O_{40}].$ 2.5CH₃OH.4H₂O [19] salts. In this work, we wish to report on the synthesis, spectroscopic characterization and crystal structure of a novel POM-based organic-inorganic hybrid, [NH₃-CH(CH₃)COOH][H₃O]₈[PMo₁₂O₄₀]₃.4NH₃CH(CH₃)COO which contains two symmetrically independent Keggin polyoxoanions.

EXPERIMENTAL

Materials and Instrumentation

All chemicals were purchased commercially and used

^{*}Corresponding author. E-mail: mahjouba@modares.ac.ir

without further purification. The ¹H, ¹³C and ³¹P NMR spectra were determined on a Bruker Avance DRS 500 spectrometer. The ¹H and ¹³C chemical shifts were determined relative to internal TMS, and the ³¹P chemical shifts relative to 85% H₃PO₄ as an external standard. The infrared spectrum was recorded on a Shimadzu model IR-60 spectrometer. Elemental analysis was performed using a Heraeus CHN-O-RAPID apparatus.

Synthesis of [NH₃-CH(CH₃)COOH][H₃O]₈ [PMo₁₂O₄₀]₃.4NH₃CH(CH₃)COO

A solution of alanine (0.136 g, 1.53 mmol) in a mixture of HCl (2 ml, 1 M)-H₂O (8 ml) was added dropwise to a solution containing H₃PMo₁₂O₄₀ (1.387 g, 0.76 mmol) in H₂O (25 ml) and was stirred for 1.5 h at room temperature. After filtering, the solution was hold in a beaker at room temperature; it takes few days to obtain the yellow crystals from this solution. IR (KBr) frequencies (cm⁻¹): 771vs, 872s, 956vs, 1055vs, 1382m, 1466m, 1608m, 1726m, 3180m, 3395m. ³¹P NMR ((D₆)DMSO): -3.86. ¹H NMR ((D₆)DMSO): 1.33 (d, ³J(H,H) = 7.3 Hz, 15H, 5CH₃), 3.98 (b, H₂O, 8H₃O⁺, 1COOH and 5CH), 8.18 (b, 15H, 5NH₃⁺). ¹³C NMR ((D₆)DMSO): 172.25 (s,

Empirical formula	$C_{15}H_{60}Mo_{36}N_5O_{138}P_3$	
Formula weight	6065.43	
Temperature	120(2) K	
Wavelength (Å)	0.71073	
Crystal system	Orthorhombic	
Space group	C222	
Unit cell dimensions	a = 16.0392(16) Å,	
	b = 34.480(4) Å,	
	c = 12.8968(13) Å	
Volume	7132.3(12) Å ³	
Z	2	
Density (calculated)	2.824 g cm ⁻³	
Absorption coefficient	3.197 mm ⁻¹	
F(000)	5692	
Crystal size	$0.34\times0.25\times0.22~mm^3$	
Theta range for data collection	2.11 to 27.00°	
Index range	$-19 \le h \le 20, -43 \le k \le 38, -16 \le l \le 15$	
Reflections collected	19109	
Independent reflections	7732 [R(int) = 0.0238]	
Completeness to $\theta = 27.00^{\circ}$	99.0%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.498 and 0.396	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	7732/2/456	
Goodness-of-fit on F ²	1.052	
Final R indices [for 7390 refl. with $I > 2\sigma(I)$]	R1 = 0.0433, $wR2 = 0.1241$	
R indices (all data)	R1 = 0.0456, $wR2 = 0.1270$	
Absolute structure parameter	0.01(6)	
Largest diff. peak and hole	3.344 and -1.884 e.Å ⁻³	

Table 1. Crystal Data and Structure Refinement for Title Hybrid Material

A Novel Hybrid Material

C=O), 47.96 (s, CH), 15.69 (s, CH₃). Anal. Calc. for $C_{15}H_{60}Mo_{36}N_5O_{138}P_3$: C, 2.97; H, 1.00; N, 1.15; found: C, 2.94; H, 0.99; N, 1.16.

RESULTS AND DISSCUSION

IR Spectroscopy

The IR spectrum of title compound contains the characteristic bands at 771 (Mo-O_c-Mo), 872 (Mo-O_b-Mo), 956 (Mo-O_d) and 1055 cm⁻¹ (P-O_a) which demonstrate the *Keggin* structure of Mo atom (O_a, O_b, O_c and O_d are different kind oxygen atoms in *Keggin* polyoxoanion). The band at 1726 cm⁻¹ is assigned to C=O group.

NMR Spectroscopy

The phosphorus-31 NMR spectrum of title compound shows one signal at -3.86 ppm indicating the *Keggin* type polyoxoanions of Mo. The CH₃ protons appear at 1.33 ppm (doublet) in ¹H NMR spectrum. The signals at 15.69, 47.96 and 172.25 ppm in ¹³C NMR spectrum are assigned to CH₃, CH and C=O carbon atoms.

Description of the Crystal Structure

The crystal data and the details of X-ray analysis are given in Table 1. There are three $PMo_{12}O_{40}^{3^-}$ anions in title compound, two of them as the form of Fig. 1, top and the other as Fig. 1, bottom. The inorganic anions in the title hybrid have a *Keggin* structure with 4 different kinds of O atoms: i) 12 terminal oxygens, ii) 4 bonded oxygen to P and Mo, iii) the 12MoO₆ octahedra corner-shared oxygens and iv) the 12MoO₆ octahedra edge-shared oxygens. The P-O bonds in the polyoxoanions are single [1.530(5) Å to 1.539(6) Å], the P atoms have a tetrahedral configuration and the O-P-O angles are in the range of 109.0(4)° to 109.9(4)°. Selected bond lengths and angles are given in Table 2.

The Organic cation. ⁺NH₃-CH(CH₃)COOH, and zwitterions. ⁺NH₃CH(CH₃)COO⁻, produce different electrostatic interactions with the two symmetrically different inorganic anions. A view of two crystallographically independent polyoxoanions, organic cation ⁺NH₃-CH(CH₃)COOH, zwitterion ⁺NH₃CH(CH₃)COO⁻ and symmetrically non-equivalent H_3O^+ oxygen atoms is shown in Fig. 2. The unit cell packing of title hybrid material is shown

Fig. 1. Two symmetrically different *Keggin* polyoxoanions in compound [NH₃-CH(CH₃)COOH][H₃O]₈[PMo₁₂O₄₀]₃. 4NH₃CH(CH₃)COO.

in Fig. 3. The *Keggin* anion in the unit cell center, which is symmetrically equivalent to four *Keggin* anions in the unit cell edges (see the *Keggin* anion in the cross which is caused by

Pourayoubi & Mahjoub

Fig. 2. A view of two symmetrically independent polyoxoanions, ⁺NH₃-CH(CH₃)COOH organic cation, ⁺NH₃CH(CH₃)COO⁻ zwitterion and the oxygen atoms of symmetrically different H₃O⁺.

Fig. 3. A view of unit cell packing of the title hybrid material.

A Novel Hybrid Material

Mo(1)-O(4)	1.847(6)	P(2)-O(21)#4	1.539(6)
Mo(1)-O(3)	1.987(6)	P(2)-O(21)#2	1.539(5)
Mo(1)-O(1)	2.390(6)	O(31)-C(1)	1.22(2)
Mo(6)-O(6)#1	1.892(6)	O(32)-C(1)	1.333(18)
Mo(8)-O(25)#2	1.827(6)	N(1)-C(2)	1.463(13)
Mo(9)-O(28)	1.680(7)	O(33)-C(4)#5	1.37(7)
Mo(9)-O(30)#3	1.811(7)	O(33)-C(4)	1.37(7)
Mo(9)-O(21)	2.421(5)	O(33)-C(6)#5	1.88(5)
P(1)-O(1)	1.530(5)	O(34)-C(4)	1.61(8)
P(1)-O(8)	1.535(5)	N(2)-C(5)	1.57(7)
O(5)-Mo(1)-O(4)	106.0(3)	P(1)-O(1)-Mo(6)	125.5(3)
O(5)-Mo(1)-O(2)	100.5(3)	Mo(1)-O(1)-Mo(6)	89.11(17)
O(28)-Mo(9)-O(30)#3	104.8(3)	Mo(5)-O(1)-Mo(6)	88.61(18)
O(28)-Mo(9)-O(29)	97.6(3)	P(1)-O(8)-Mo(4)	126.0(3)
O(27)-Mo(9)-O(29)	84.9(3)	P(1)-O(8)-Mo(2)	125.8(3)
O(1)#1-P(1)-O(1)	109.9(4)	P(2)-O(21)-Mo(8)	125.9(3)
O(1)#1-P(1)-O(8)	109.7(3)	O(31)-C(1)-O(32)	126.6(16)
O(21)#4-P(2)-O(21)#2	109.5(4)	O(31)-C(1)-C(2)	121.4(12)
O(21)#4-P(2)-O(21)	109.8(4)	N(1)-C(2)-C(3)	111.1(10)
Mo(1)-O(1)-Mo(5)	89.74(19)	N(1)-C(2)-C(1)	107.6(10)

Table 2. Selected Bond Lengths and Angles

Symmetry transformation used to generate equivalent atoms: (#1) -x+3/2, -y+3/2, z, (#2) -x+1, -y+1, z, (#3) -x+1, y, -z+1, (#4) x, -y+1, -z+1, (#5) x, -y+2, -z+2, (#6) -x+2, y, -z+2, (#7) -x+2, -y+2, z.

Fig. 4. Organic cation in the title compound.

the planes (010) and (100)) is surrounded with 4 *Keggin* anions; these two kinds *Keggin* polyoxoanions are symmetrically different. The organic cation in this compound is disordered over 4 positions with equal occupancies (Fig. 4).

Supplementary Material

CCDC 604766 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via*: www.ccdc.cam.ac.uk/data-request/cif.

ACKNOWLEDGEMENTS

Support of this investigation by Educational Council of Tarbiat Modares University is gratefully acknowledged. This work is done as a part of Dr. Mehrdad Pourayoubi's research for his postdoctoral degree at Tarbiat Modares University.

Pourayoubi & Mahjoub

REFERENCES

- A. Müller, F. Peters, M. Pope, D. Gatteschi, Chem. Rev. 98 (1998) 239.
- [2] K. Amani, F. Maleki, J. Iran. Chem. Soc. 4 (2007) 238.
- [3] H. Firouzabadi, A.A. Jafari, J. Iran. Chem. Soc. 2 (2005) 85.
- [4] S. Shanmugam, B. Viswanathan, T.K. Varadarajan, J. Membr. Sci. 275 (2006) 105.
- [5] J.-Y. Niu, X.-Z. You, C.-Y. Duan, H.-K. Fun, Z.-Y. Zhou, Inorg. Chem. 35 (1996) 4211.
- [6] S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148.
- B.Y. Ahn, S.I. Seok, S.-I. Hong, J.-S. Oh, H.-K. Jung, W.J. Chung, Optical materials 28 (2006) 374.
- [8] J. Kang, J.A. Nelson, M. Lu, B. Xie, Z. Peng, D.R. Powell, Inorg. Chem. 43 (2004) 6408.
- [9] F. Hussain, U. Kortz, R.J. Clark, Inorg. Chem. 43 (2004) 3237.
- [10] C. Lei, J.-G. Mao, Y.-Q. Sun, J.-L. Song, Inorg. Chem. 43 (2004) 1964.

- [11] J. Lü, E. Shen, Y. Li, D. Xiao, E. Wang, L. Xu, Cryst. Growth Des. 5 (2005) 65.
- [12] D.E. Katsoulis, Chem. Rev. 98 (1998) 359.
- [13] E. Coronado, C.J. Gómez-Garcia, Chem. Rev. 98 (1998) 273.
- [14] S. Upreti, A. Ramanan, Cryst. Growth Des. 5 (2005) 1837.
- [15] M. Vasylyev, R. Popovitz-Biro, L.J.W. Shimon, R. Neumann, J. Molec. Struct. 656 (2003) 27.
- [16] K. Gholivand, M. Pourayoubi, Z. Anorg. Allg. Chem. 630 (2004) 1330.
- [17] K. Gholivand, Z. Shariatinia, M. Pourayoubi, Polyhedron 25 (2006) 711.
- [18] K. Gholivand, M. Pourayoubi, Z. Shariatinia, S. Molani, Z. Kristallogr. NCS 220 (2005) 387.
- [19] a) M. Pourayoubi, A.R. Mahjoub, E. Latifi, Anal. Sci.
 22 (2006) x281; b) F. Maleki, A.R. Mahjoub, M. Pourayoubi, Anal. Sci. 23 (2007) x137; c) M. Pourayoubi, A.R. Mahjoub, Acta Cryst. E63 (2007) m2622.