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 We have investigated different algorithms for the simulation of kinetics of small systems. We have simulated the first order 

reversible reaction with the Gillespie, Gibson and Bruck time simulation as a function of Poisson distribution and compared the 

results of three algorithms. We have also simulated intracellular viral kinetics for a genome with Gillespie and Poisson 

distribution algorithms. 
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INTRODUCTION 

 

 To investigate the kinetics of small systems, the use of a 

stochastic approach is necessary. The classical approach to 

chemical kinetics is called a deterministic approach, since 

once the state of the system is known at time t1, its state at any 

other time will be known and no fluctuation about this value is 

observed [1,6].  

 The stochastic approach uses the inherent random nature of 

microscopic molecular collision to build a probabilistic model 

for a chemical reaction. This approach is useful in studying the 

kinetics of small systems. For small systems the validity of the 

deterministic approach becomes worse [1-7]. The calculated 

average concentration vs. time given by a stochastic approach 

and deterministic approach for a linear system are found to be 

equal. However, the results of these two approaches for 

nonlinear small systems are completely different [4].  

 The stochastic formulation proceeds by considering the 

grand probability function P(X;t), the density  probability of 

particles in volume V at  time t,  where Xi  is  the  number of  Si 
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species and X ≡ (X1, X2….XN) is a vector for the molecular 

species populations. Evidently, knowledge of this function 

provides a complete understanding of the probability 

distribution of all possible states at any time. By considering a 

discrete infinitesimal time interval (t, t+dt) in which either 0 

or 1 reaction occurs, we see that there exists only M+1 distinct 

configurations at time t that can lead to the state X at time 

t+dt. We can write our grand probability function at time t+dt 

as a function of all possible states at time t as follows [2,9,12]: 

 

P(X;t+dt) = P(X;t)*P (no state change  over dt) + 

∑
=

−
M

XP
1

(
µ

µυ ;t)*P (state changes to X over dt)  

 

where υµ is a stoichiometric vector defining the result of 

reaction µ on a state vector X, which means  X →  X+υµ after 

an occurrence of reaction µ,P (no state changes over dt) = 1-

∑
=

M

a
1µ

µ (X)dt, P (state changes to X over dt) = ∑
=

−
M

XP
1

(
µ

µυ ;t). 

 By using this formula, we may derive the chemical master 

equation (CME) [2,9,12] that describes the stochastic 

dynamics of the system as  
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µυ ;t) - aµ (X)*P(X;t) 

                                                                                                (1) 

               

 Due to the complexity of the CME, an analytical solution 

is rarely possible. Hence, for such a problem, simulation is an 

appropriate approach to solve the CME. 

 

STOCHASTIC SIMULATION ALGORITHMS 

 

 Essentially, there are three modeling regimes, namely the 

discrete and stochastic, continuous and stochastic, and the 

continuous and deterministic, which depend on the nature of 

the reaction and the number of molecules in the system under 

study. A key simulation technique is the stochastic simulation 

approach to chemical reactions, which was developed by 

Gillespie via the stochastic simulation algorithm [8]. This is an 

exact procedure for numerically simulating the time evolution 

of a well stirred reacting system that takes proper account of 

the randomness inherent in such a system [2]. It is rigorously 

based on the same microphysical premise that underlies the 

CME described above and gives a more realistic 

representation of a system evolution than the deterministic 

reaction rate equation represented mathematically by ordinary 

differential equations that are to be solved simultaneously.     

     Recently, considerable attention has been paid to reduce the 

computational time of simulation algorithms for stochastic 

chemical kinetics. Gibson and Bruck [9] refined the first 

stochastic reaction simulation algorithm of Gillespie by 

reducing the number of random variables needed to be 

simulated. This algorithm can be effective for systems in 

which some reactions occur much more frequently than others. 

This algorithm is more efficient than Gillespie
,
s direct 

method in the sense that only one new random number must 

be simulated for each reaction event that takes place, unlike 

Gillespie’s method in which two random numbers are 

required. Note, however, that although selective recalculation 

of the hazards, hi(x,ci) is also possible for the Gillespie 

algorithm [8,10,11], it could speed up the algorithm 

enormously for large systems, which will be introduced later. 

 

Gillespie’s Direct Method 

 For a system in a given state,  Gillespie’s  direct  algorithm 

 

 

[9] asks two equations: Which reaction occurs next and when 

does it occur? Clearly, both of these equations must be 

answered probabilistically by specifying the probability 

density P(µ,τ) that the next reaction is µ and it occurs at time τ. 

It can be shown that  

 

 ( , ) exp( )
j

j

P d a a dµµ τ τ τ τ= − ∑
                                            (2) 

 

This equation leads directly to the answers of the two 

aforementioned questions. First, what is the probability 

distribution for reaction? Integrating P(µ,τ) over all τ from 0 to 

∞ results in 

 

 
∑

=

j

ja

a
P

µ
µ)(                                                                      (3) 

 

Second, what is the probability distribution as function of 

time? Summing P(µ,τ) over all µ results in 

 

 ( ) ( ) exp( )j j

j j

P d a a dτ τ τ τ= −∑ ∑
                                          (4) 

 

These two distributions lead to Gillespie’s direct algorithm as: 

1. Initialize (i.e., set initial numbers of molecules, set 0 →  t) 

[9]. 

2. Calculate the propensity function, ai, for all i. 

3. Choose µ according to the distribution in equation 3. 

4. Choose τ according to an exponential with parameter 

j

j

a∑ (as in equation 4). 

5. Change the number of molecules to reflect execution of 

reaction µ. Set t + τ →  t   

6. Go to step 2. 

 

Gillespie’s First Reaction Method 

 

 Algorithm І is direct in the sense that it generates µ and τ 
directly. Gillespie also developed the first reaction method, 

which generates a putative time τi for each reaction; the 

reaction with the smallest putative time is allowed to occur, 

which will be shown by τµ. Formally, the algorithm for the 

first reaction method is as follows [9]: 
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1. Initialize (i.e., set initial numbers of molecules, set 0 →  t). 

2. Calculate the propensity function, ai, for all i. 

3. For each i, generate a putative time, τi, according to an 

exponential distribution with parameter ai. 

4. Let µ be the reaction whose putative time, τµ, is the smallest. 

5. Let τ be τµ. 

6. Change the number of molecules to reflect execution of 

reaction µ, set t + τ →  t. 

7. Go to step 2 [9]. 

 

Gibson-Bruck Algorithm 

 The next reaction method (also known as the Gibson 

Bruck algorithm) is a modification of the first reaction 

method, which makes it much more efficient: 

1. Initialize 0 →  t, in which c and x are the rate constant and 

number of particles in each time, and additionally calculate all 

of the initial reaction hazards hi (x,ci), similar to the definition 

given in equation (9), i = 1, 2, …, n. As shown in equations (5-

8) use these hazards to simulate the first reaction time ti = 

[(1/hi(x,ci))ln(1/r)] where r is a random number. 

 Suppose we have the following n reactions:   

 

 1
1 1 1A P

c
a →                                                                       (5) 

 

 2
2 2 2A P

c
a →                                                                     (6)  

 

 
iA P

ci
i ia →                                                                       (7) 

 

     
n

A P
cn

n n
a →                                                                     (8) 

 

hi (Ai ,ci) at time t  is defined as, 

 

  

( )
!

! !
i

i i

k
c

a k a−

.                                                                         (9) 

 

where k is number of  Ai species at time t. 

2. Let j be the index of the smallest ti. 

3. Set tj  →  t. 

4. Update x  according to reaction with index j. 

5. Update hj (x,cj) according to the new state x and simulate a 

new putative time t + [(1/hj(x,cj))ln(1/r)] � tj. 

6. For   each   reaction  (i ≠ j)  whose  hazard   is   changed   by  

 

 

 

reaction j: 

(a) Update hi� = hi (x,ci) (but temporarily keep the old hi). 

(b) Set t + (hi/hi� )(ti – t) →  ti 

(c) Forget the old hi. 

7. If t < Tmax, return to step 2 [9], where Tmax is the input for 

the time length in which the reaction occurs.  

 We shall introduce a new algorithm based on the Poisson 

distribution P(k) = e
-λ λk 

/k1 which was introduced in Ref. [2] 

but was not applied.  This new algorithm is as follows: 

1. Initialize the system at t = 0 with rate constants c1, c2… cn  

and initial numbers of molecules for each species, A1, A2…, 

An. 

2. For each i, calculate hi(Ai,ci) based on the current state. 

3. Calculate λ ≡
1

n

i=

∑ hi(Ai ,ci). 

4. Simulate time to next event, t  , as a 1/poisson(λ) quantity. 

5. Set t = t + t .  

6. Simulate reaction index, i, as a discrete random quantity 

with probabilities 

 hi(Ai,ci)/λ and i= 1, 2…, m. 

7. Update x according to reaction i .  

8. Output x and t. 

9. If t < tmax, return to step 2. 

This algorithm becomes more efficient by increasing the 

number of particles. Hence our new algorithm is better thanthe 

Gibson and Bruck algorithm. The time of simulation by the 

Poisson distribution for large systems is similar to the 

Gillespie algorithm. 

 

ANALYSIS AND RESULTS  

 

Exact Solution of Master Equation for First Order 

Reversible Reaction 

 If we let X (t) be the concentration of A molecules at time t 

and let k1 and k2 be the forward and backward rate constants, 

respectively, then we obtain [7] 

 

2 0 1 1 1 1 2 0( 1) ( ) ( 1) ( ) [ ( )] ( )x
x x x

dP
k x x P t k x P t k x k x x P t

dt
− += − + + + − + −

                                                                                        (10) 

 

where is the total number of A and B molecules. By definition 

of generating function of Px(t) as  
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0

( , ) ( ) x

x

x

F s t P t s
∞

=

=∑ 1s <                                                    (11)   

   

Its partial differential equation becomes 

 

 2

1 2 1 1 0 2[ ( ) ] ( 1)
F F

k k k s k s x k s F
t s

∂ ∂
= + − − + −

∂ ∂
                       (12) 

 

If we assume that there are x0 molecules of A at time zero, 

then the solution of equation (8) is  

 

 0
( 1)

( , ) [ ]
kt

xe s s
F s t

λ λ

λ

− − + −
=                                         (13) 

   

where λ = k1/k2 and k = k1 + k2. We can define the average and 

variance for any particle according to 

 

 
0

0

( )
x

t x

x

x xP t
=

< > =∑                                                              (14) 

 

 
0 0

2 2 2 2

0 0

( ) ( ( ))
x x

t t x x

x x

x x x P t xP t
= =

< > − < > = −∑ ∑                        (15)   

                                                   

 According to equations (14) and (15) we can prove that, 

  

 
1( ( )) ( )s

F
E X t

s
=

∂
=

∂
                                                             (16) 

  

   
2

2 2

1 1 12
( ( )) ( ) ( ) ( )s s s

F F F
D X t

s s s
= = =

∂ ∂ ∂
= + −
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                            (17) 

 

where E (X (t)) is the expected value or mean and D
2 

(X (t)) is 

the variance of X (t). 

 We can use equations (16) and (17) to obtain the average 

number of particles and variance from equation (9) for a first 

order reversible reaction as  

 

 0
1 2

1 2

( ( )) [ ]( )
( )

ktx
E X t k e k

k k

−= +
+

                                       (18) 

 

 2 0( ( )) [ ](1 [ ])
(1 ) (1 )

x
D X t

ω ω

λ λ
= −

+ +
                                         (19) 

 

where ω = λe-kt
 + 1. 

 Figures 1 and 2 show the simulation results of 500  runs  of 

 

 

the stochastic algorithm simulating a system with the initial 

molecular populations A = 100, B = 2, for reaction A ↔ B 

with kf = 1 s
-1

, kr = 0.5 s
-1

 by the Gibson and Bruck and 

Gillespie algorithms, respectively. Figure 3 displays the 

simulation results obtained from the new algorithm, based on 

the Poisson distribution. In Figure 1, we observe that the 

average number of particles from the simulation is not the 

same as the average obtained from the master equation. Figure 

2 is obtained from an exact procedure for numerically 

simulating the time evolution; however, the standard deviation 

about the mean value is high. The mean number of particles 

for simulation from the algorithm based on time simulation 

with the Poisson distribution is better than the number 

obtained from the prediction of the Gibson and Bruck 

algorithm, but the predicted mean for the number of particles 

from the Gillespie algorithm is better than that obtained from 

the Poisson distribution algorithm. In Figures 4, 5, and 6 the 

average number of particles obtained from the Gibson and 

Bruck and Gillespie time simulations are functions of the 

Poisson distribution algorithms, which are compared with the 

exact value. The variance about the mean for the Poisson 

distribution algorithm, as shown in Fig. 7, is less than those of 

the two other algorithms. 

 

Intracellular Viral Model 

 We analyzed a simple network of a model virus, 

represented in equations (18-22). The components studied 

were the viral nucleic acids and a viral structural protein. The 

viral nucleic acids were classified as genomic (gen) or 

template (tem). The genome, whether it is DNA, positive- 

strand RNA, negative-strand RNA, or some other variant, is 

the vehicle by which viral genetic information is transported 

[3]. The genome can undergo one of the two fates. The first 

possibility is that it may be modified, whether through 

integration into the host genome or some other type of 

processing (reverse transcription) to form a template. 

 The template refers to the form of the nucleic acid that is 

transcribed and involved in catalytically synthesizing every 

viral component. The second possibility for the genome is that 

it may be packaged within structural proteins to form progeny 

virus structural proteins, such as capsid proteins, or envelope 

proteins [3].  

 The standard sequence of viral replication  events  involves 
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  Fig. 1. Number   and  mean  number  of  particles  obtained 

              from the Gibson and Bruck algorithm for first order 

             reversible  reactions A ↔ B when A = 100 and B = 

            2.  Region  1   shows   deviation   from   the   mean 

             number   of   particles,  B,   and    region  2   shows 

                deviation from the mean number of A. 

 

 

 

 
Fig. 2. Number  and  mean   number  of  particles  obtained 

            from   the   Gillespie   algorithm    for    first    order 

           reversible  reactions   A ↔ B   when   A = 100   and  

              B = 2.  Region  1 shows  deviation  from   the  mean  

           Number   of   particles,  B,  and    region   2   shows 

              deviation from the mean number of A. 

 

 

 
Fig. 3. Number  and mean number of particles obtained for the  

           time  simulation as a  function of  Poisson  distribution  

           algorithm  for  first  order  reversible  reactions  A ↔ B  

           when  A = 100  and  B = 2.  Region 1 shows  deviation  

           from  the mean  number  of  particles, B,  and  region  2  

            shows deviation from the mean number of A. 

 

 

 

 
Fig. 4. Average number of particles obtained from Gibson and  

            Bruck   algorithm   (1)  compared   to  the  exact   value   

            (2) for B. Similar result for A (3) is compared  with the   

            exact value (4). 
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       Fig. 5. Average   number of  particles  obtained   from the  

                 Gillespie  algorithm  (1)  compared   to   the  exact  

                 value (2)  for B. The calculated result  for  A (3) is  

                   compared with the exact value (4). 

 

 

 
     Fig. 6. Average   number  of  particles  obtained   from  the  

                 simulation as  a   function  of   Poisson  distribution  

                 algorithm  (1) compared  to  the  exact value (2) for  

                 B. The calculated result for A (3) is  compared with  

                  the exact value (4). 

 

 

the amplification of the viral template after the infection, 

followed by production of progeny virus. DNA viruses, for 

example,  initially  make low  levels of non-structural proteins,  

 

 

 
Fig. 7. Coefficient  variation  for the  first  order  reversible  

               reaction obtained from Bruck (1), Gillespie (2)  and  

               Poisson distribution (3) algorithms. 

 

 

 

 
Fig. 8. Average number of particles for the genome specie  

                in  viral  model  obtained  from  Gillespie  (1)  and   

                Poisson distribution (2) algorithms. 

 

 

 

 

then catalytically amplify the number of template molecules to 

a level that is sufficiently high, so that structural proteins can 

be synthesized  for  incorporation  into  progeny  particles. The 
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modeling network employed was “lumped”, in that many 

individual reaction steps were combined into a single step. For 

example synthesis of structural protein requires that the viral 

DNA be transcribed into mRNA and that the mRNA be 

translated to generate the structural protein [3]. For the viral 

model, it was assumed that such reactions could be combined 

together and characterized using a single-rate parameter. The 

lumped reactions are represented by arrows with equations 

(18-19).     

 Figure 8 is one run from the genome simulation in an 

intracellular viral kinetics model with a time simulation using 

the Poisson distribution and Gillespie algorithms, which may 

represent the actual behavior of a reaction in a biological 

system [2]. The mechanism for the genome from the 

intracellular viral kinetics [3] is as follows: 

   

                                                                     (20) 

 

 
k2X D→                                                                                                        (21) 

 

 k5X B→                                                                        (22) 

 

 6B E
k→                                                                         (23) 

 

 4A+B C
k→                                                                   (24) 

 

In this mechanism A, B, C, D, E, and X are genome, structural 

protein, virus, degradation template, degradation structural 

protein, and template, respectively. The initial molecular 

populations are A = 10, B = 0, C = 0, D = 0, E = 0, X = 5 with 

k1 = 0.025 day
-1

, k2 = 0.25 day
-1

, k3 = 1.0 day
-1

, k4 = 7.5 × 10
-6

 

molecules
-1

 day
-1

, k5 = 1000 day
-1

, k6 = 1.99 day
-1

. 

 

DISCUSSION AND CONCLUSION 

 

 We simulated the concentration of a first order reversible 

reaction using three algorithms. We further simulated the 

intracellular viral kinetics of viral replication events by time 

simulation,  as  a  function  of  the   Poisson   distribution   and  

 

 

 

 

Gillespie algorithms. We have compared the mean number of 

particles given by the three algorithms with an exact solution 

of the master equation. Variance about the mean number of 

particles in the time algorithm based on the Poisson 

distribution P(k) = e
-λ λk 

/k1, in which t �= 1/Poisson(λ) quantity 

is less than those obtained from the two other algorithms. By 

increasing the number of particles, the mean number of 

particles approaches the exact average number of particles 

obtained from the master equation. 

 

ACKNOWLEDGEMENTS 

 

 We appreciate Sharif University of Technology Research 

Council for its financial support and Mr. Mohammad Dehghan 

Niry for his useful comments. 

   

REFERENCES 

 

[1] D.A. McQuarrie, J. Chem. Phys. 38 (1963) 433. 

[2] T.E. Turner, S. Schnell, K. Burrage, Com. Biol. & 

Chem. 28 (2004)165. 

[3] R. Srivastava, L. You, J. Summers, J. Yin, J. Theor. 

Biol. 218 (2002) 309. 

[4] J. Rose, Q. Zheng, J. Chem. Phys. 94 (1991) 3644. 

[5] H. Qian, E.L.Elson, Biophys. Chem. 101 (2002) 565. 

[6] D.A. McQuarrie, C.J. Jachimowski, M.E. Russell, J. 

Chem. Phys. 40 (1964) 2914. 

[7] D.A. McQuarri, Stochastic Approach to Chemical 

Kinetics, Methuen, London, 1967.                                               

[8] D.T. Gillespie, J. Phys. Chem.81 (1977) 2340. 

[9] M.A. Gibson, J. Bruck, J. Phys. Chem. A 104 (2000) 

1876. 

[10] P. Erdi, J. Toth, Mathematical Models of Chemical 

Reaction. Theory and Applications of Deterministic and 

Stochastic Models, Princeton University Press, 

Princeton, NJ, 1988.  

[11] D.T. Gillespie, J. Comput. Phys. 22 (1976) 403. 

[12] D.T. Gillespie, J. Stat. Phys.16 (1977) 311. 

[13] N.G. Van Kampen, Stochastic Processes in Physics and 

Chemistry, Elsevier, Amsterdam, 1992. 

 

 

 


