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 The non-rigid molecule group (NRG) theory in which the dynamic symmetry operations are defined as physical 
operations is a new field in chemistry. Smeyers, in a series of papers, applied this notion to determine the character table of 
restricted NRG of some molecules. For example, Smeyers and Villa computed the r-NRG of the triple equivalent methyl 
rotation in pyramidal trimethylamine with inversion and proved that the r-NRG of this molecule is a group of order 648, 
containing two subgroups of order 324 without inversion [5].  
 In this work, a simple method is described, through which it is possible to calculate character tables for the symmetry 
group of molecules. We study the full NRG of melamine, and prove that it is a groups of order 48, with 27 and 10 
conjugacy classes. Also, we compute the symmetry of melamine and prove that it is a non-abelian groups of order 6. The 
method can be generalized to apply to other non-rigid molecules.  
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INTRODUCTION 
 
 The mathematical tools of group theory have been used 
extensively for the analysis of the symmetry properties of 
physical systems. The symmetry properties of rigid molecules 
are well known and so it is natural to investigate non-rigid 
molecules. 
  According to Y.G. Smeyers [1], the non-rigid molecule 
group (NRG) is strictly defined as the complete set of the 
molecular conversion operations, which commute with a given 
nuclear Hamiltonian operator, limited to large amplitude 
motions. In addition, these molecular conversation operations 
are expressed in terms of physical operations, such as 
rotations, internal rotations and inversions, similar to 
Altmann's  theory,  rather  than  in  terms of  permutations  and 
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permutation-inversions. This way of expressing the non-rigid 
operations is indeed more descriptive and flexible. 
  Longuet-Higgins investigated the symmetry groups of 
non-rigid molecules, where changes from one conformation to 
another can occur easily [2]. In many cases, these symmetry 
groups are not isomorphic with any of the familiar symmetry 
groups of rigid molecules, and their character tables are not 
known. It is therefore of some interest and importance to 
develop simple methods of calculating these character tables, 
which are needed for the classification of wave functions, 
determination of selection rules, and so on.  
 Lomont [3] has given two methods for calculating 
character tables. These are satisfactory for small groups, but 
both of them require a knowledge of the class constant and 
hence of the group multiplication table, thereby becoming 
very unwieldy as soon as the order of the group becomes even 
moderately large.  For non-rigid  molecules,  whose  symmetry 
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groups may have several thousand elements, they are usually 
quite impracticable. The alternative approach is less 
mechanical, requiring a certain amount of thought, but it is 
nevertheless simpler in practice. This involves two steps: first, 
the decomposition of the group into classes, and second, the 
determination of sets of basic functions for certain 
representations, whose characters are then determined directly.  
 Stone described a method which is appropriate for 
molecules with a number of XH3 groups attached to a rigid 
framework [4]. However, this method is not  appropriate in 
cases where the framework is linear, as with ethane and 
dimethylacetylene.  
 Smeyers and Villa investigated the r-NRG of planar 
trimethylamine and proved that this is a group of order 324 
[5]. Furthermore, they showed that this molecule has a 
pyramidal inversion and so the order of r-NRG of 
trimethylamine is 648.        
  Randic has shown that a graph can be depicted in different 
ways such that its point group symmetry or three dimensional 
perception may differ, but the underlying connectivity 
symmetry is still the same as characterized by the 
automorphism group of the graph [6]. However, the molecular 
symmetry depends on the coordinates of the various nuclei 
which relate directly to their three dimensional geometry. 
Although the symmetry as perceived in graph theory by the 
automorphism group of the graph and the molecular group are 
quite different, Balasubramanian has shown  that the two 
symmetries are connected [7]. 
 The character table of full non-rigid groups of 
trimethylamine, cis- and trans-dichloro diammine platinum(II) 
and tetraammine platinum(II) with C2v and C4v point groups 
was computed [8-10].  
 In this paper, we investigate the f-NRG and symmetry of 
melamine (2,4,6-triamino-1,3,5-triazine). We prove that the f- 
NRG of melamine has order 48 with 10 conjugacy classes. 
 Throughout this paper, the notation is standard [11,12] and 
all groups considered are assumed to be finite.  
 
EXPERIMENTAL 
 
 Let us recall some definitions and notations. An 
automorphism of a graph G is a permutation g of the vertex set  
 

 
 
of G with the property that, for any vertices u and v, ug and vg 
are adjacent if and only if u is adjacent to v. The set of all 
automorphisms of a graph G, with the operation of 
composition of permutations, is a permutation group on VG, 
denoted Aut(G). By symmetry we mean the automorphism 
group symmetry of a graph. The symmetry of a graph, also 
called a topological symmetry, accounts only for the bond 
relations between atoms, and does not fully determine 
molecular geometry. The symmetry of a graph does not need 
to be isomorphic to the molecular point group symmetry. 
However, it does represent the maximal symmetry possessed 
by the geometrical realization of a given topological structure.  
 By definition, a weighted graph is a graph whose edges 
and vertices are weighted with different weights. The 
adjacency matrix of a weighted graph is defined as: Aij = wij, if 
i ≠ j and vertices i and j are connected by an edge with weight 
wij; Aij = vi, if i = j and the weight of the vertex i is vi, and Aij 
= 0. Note that vi can be taken as zero if all the nuclei are 
equivalent. Otherwise, one may introduce different weights for 
nuclei in different equivalence classes and the same weight for 
the nuclei in the same equivalence classes. The topic of 
perceiving the symmetry of a graph through the automorphism 
group of the graph has been studied in considerable depth  
[13]. However, the connection between the graph 
automorphism problem and the symmetry of a molecule has 
not been explored in as much detail. Longuet-Higgins has 
shown a more desirable representation of molecular symmetry 
using the nuclear permutation and inversion operations, 
resulting in a group called the Permutation-Inversion (PI) 
group [2]. Balasubramanian has shown that the automorphism 
group of the Euclidean graph of a molecule is the PI group of 
the molecule [7]. 
 Our computations were carried out using the  “Groups, 
Algorithms and Programming” (GAP) system [14]. GAP is a 
free and extensible software package for computation in 
discrete abstract algebra, in which you can write your own 
programs in the GAP language, and use them in the same way 
the programs which form part of the system are used. More 
information on the motivation and development of GAP to 
date can be found on the GAP web page (http://www.gap-
system.org).  
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RESULTS AND DISCUSSION 
 
 Regarding the character table of the f-NRG of melamine 
and symmetry of this molecule, first of all we must consider 
the point group of this molecule in the rigid state. The point 
group of this molecule is D3h, of order of 12. The process of 
enumerating the symmetry operations of this molecule and 
arranging them in classes entails the adoption of a numbering 
convention for the center of the molecule, central atom of 
every NH2 group, and the center of other atoms, such as 
protons in the nuclei. 
 
Character Table of Melamine 
 Using Fig. 1, we define the operations a = (10, 11), b = 
(12, 13) and c = (14, 15) for melamine which are rotations, in 
a positive sense, of each NH2 group. We assume that all these 
operations are feasible. 
 Let us first consider operations that leave the framework of 
the molecule unchanged. These operations are grouped 
according to their cycle structure; operations which rotate 
different numbers of NH2 groups must belong to different 
conjugacy classes. If we now consider the operations which 
rotate one NH2 group in melamine, we can see that they must 
all belong to the same class, since operations involving the 
rotation of the molecular framework will transform a into a-1, 
b-1 or c-1. 
 Consider next the operations that permute the nuclei of the 
framework; for this molecule, these fall into sets 
corresponding to the classes of D3h. It is clear that the point 
group D3h has exactly five different types of non-identity 
elements, i.e. C2, C3, S3, σh and σv, which are related to 
rotation through the main axial, rotational reflection, reflection 
through horizontal and vertical planes. Now, we can consider 
different conjugacy classes of D3h and fuse them to the non-
rigid group. Assume that G denotes the non-rigid group of 
melamine. 
 
 a1 = (1,3,5)(2,4,6)(7,8,9)(10,12,14)(11,13,15), 
 a2 = (3,5)(2,6)(10,13)(8,7)(12,11)(15,14), 
 a3 = (2,6)(3,5)(7,8)(11,13)(10,12). 
 
 Then |(a1)G| = 8 and |(a2)G| = |(a3)G| = 6. The point group of 
melamine can be generated by the set V1 = {a1, a2, a3 },  and  if  
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Fig. 1. (a) 2,4,6-triamino-1,3,5-triazine molecule (melamine)  

             with D3h  point  group.  (b)  The  Euclidean graph  of  

             melamine. 
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V2 = {α, β, γ} then V1∪V2 generates the non-rigid group of 
the molecule. Since, G is a permutation group, we can use the 
GAP system to find the conjugacy classes and character table 
of G. Thus G has order 48. Using the GAP System, we 
compute the character table of non-rigid group of melamine, 
as seen in Table 1. 
 
Symmetry of Melamine 
 Symmetry operations on a graph are called graph 
automorphisms. They affect only the labels of vertices by 
permuting them so that the adjacency matrix of the graph 
remains unchanged. The graph symmetry is completely 
determined by all the automorphisms it has, i.e. by specifying 
all the permutations which leave the adjacency matrix intact. 
 We can associate a permutation matrix to every 
permutation a in Sn. A permutation of the vertices of a graph 
belongs to its automorphism group if it satisfies PtAP = A, 
where Pt is the transpose of permutation matrix P and A is the 
adjacency matrix of graph under consideration. There are n! 
possible  permutation  matrices  for  a  graph  with  n  vertices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
However, all of them may not satisfy the above relationship. 
For a given adjacency matrix A, we can write a simple GAP 
program to calculate all the permutation matrices with PtAP = 
A. 
 Consider  the Euclidean graph of melamine and its 
automorphism group. It suffices to measure the Euclidean 
distances in terms of the H-H bond lengths and then construct 
the Euclidean distance matrix D for melamine. It should be 
mentioned that one does not have to work with exact 
Euclidean distances in that a mapping of weights into a set of 
integers would suffice as long as different weights are 
identified with different integers. In fact, the automorphism 
group of the integer-weighted graph is identical to the 
automorphism group of the original Euclidean graph. To 
illustrate, let us map the Euclidean edge weighted for 
melamine as 2.322 → 1, 2.52 → 2, 3.22 → 3, 4.59 → 4, 1.75 
→ 5, 5.69 → 6, 4.61 → 7 and 6.36 → 8.  
 We assume that H is  the automorphism group of the given 
weighted graph. We have written the following GAP program 
to compute the automorphism group Aut(H). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Table 1. Character Table of the f-NRG of  Melamine 
  

  1a 2a 2b 2c 2d 2e 4a 4b 3a 6a 

 2p 1a 1a 1a 1a 1a 1a 2b 2b 3a 3a 

 3p 1a 2a 2b 2c 2d 2e 4a 4b 1a 2c 

 5p 1a 2a 2b 2c 2d 2e 4a 4b 3a 6a 

χ1  1 1 1 1 1 1 1 1 1 1 

χ2  1 1 1 1 -1 -1 -1 -1 1 1 

χ3  1 -1 1 -1 -1 1 1 -1 1 -1 

χ4  1 -1 1 -1 1 -1 -1 1 1 -1 

χ5  2 2 2 2 0 0 0 0 -1 -1 

χ6  2 -2 2 -2 0 0 0 0 -1 1 

χ7  3 -1 -1 3 -1 -1 1 1 0 0 

χ8  3 -1 -1 3 1 1 -1 -1 0 0 

χ9  3 1 -1 -3 -1 1 -1 1 0 0 

χ10  3 1 -1 -3 1 -1 1 -1 0 0 
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GAP Program for Finding Symmetry of Melamine 
 
D := [[0,1,1,2,3,3,2,4,4],[1,0,1,4,4,2,3,2,3], [1,1,0,3,2,4,4,3,2], 
        [2,4,3,0,5,6,7,8,6],[3,4,2,5,0,8,6,6,7],[3,2,4,6,8,0,5,7,6], 
        [2,3,4,7,6,5,0,6,8],[4,2,3,8,6,7,6,0,5],[4,3,2,6,7,6,8,5,0]]; 
    n:=9; i:=0; H:=[];  
    t := SymmetricGroup(n); 
    tt:=Elements(t); 
  for a in tt do 
              x:=PermutationMat(a,n); 
              y:=TransposedMat(x); 
              z := y*D*x; 
              if z = D then AddSet(H,a); fi; 
  od; 
G := Group(H); 
 
 In this program, the resulting distance matrix D for 
melamine is as follows: 
  

D = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

058676234
506768324
860567432
675086423
766805243
687650342
234423011
323244101
442332110

 

  Using our program, we can see that  
 G = { (), (1,2,3)(4,6,9)(5,7,8),(2,3)(4,7)(5,6)(8,9),           
                (1,2)(4,8)(5,9)(6,7),(1,3,2)(4,9,6)(5,8,7),   
                (1,3)(4,5)(6,8)(7,9)}, 
 
 
 
 
 
 
 
 
 
 

 
 
which is isomorphic to S3, the symmetric group on three 
symbols. 
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