Journal of the Iranian Chemical Society, Vol. 2, No. 2, June 2005, pp. 140-148.

JOURNAL OF THE Iranian Chemical Society

Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid: Synthesis, Spectral Characterization and Biological Applications

K. Shahid^a, S. Shahzadi^a, S. Ali^{a,*}, M.H. Bhatti^b and K.M. Khan^c ^aDepartment of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan ^b Department of Chemistry, Allama Iqbal Open University, H-8, Islamabad, Pakistan ^cH.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan

(Received 8 November 2004, Accepted 5 April 2005)

4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid and its complexes with methyl-, n-butyl-, phenyl-, benzyl- and octyl-tin have been synthesized and characterized by elemental analysis and spectral studies. The geometry around the tin atom has been deduced from both solid and solution studies. These complexes were also tested against different bacteria and fungi to determine their toxicity. LD₅₀ data was also calculated using the Brine Shrimp method.

Keywords: Organotin(IV) carboxylates, Spectroscopic characterization, Biological applications

INTRODUCTION

Organotin(IV) carboxylates comprise an important class of compounds [1-4]. Certain derivatives have industrial applications, for example, as homogeneous catalysts. Other uses relate to agricultural applications, where organotin carboxylates have been used as biocides and the like. More recently, the pharmaceutical properties of organotin carboxylates have been investigated with particular reference to their antitumor activity [5,6]. In this paper, we report the synthesis, spectral characterization and biological activity of the organotin derivatives of 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid (Fig.1).

EXPERIMENTAL

Di- and triorganotin(IV) salts were purchased from

Fig. 1. Structure of the of 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid.

Aldrich. Tribenzyltin chloride was prepared as previously described [7]. All other reagents were of the purest grade available. Solvents were purified by as previously published [8]. Melting points were determined in capillary tubes on an electrothermal melting point apparatus, model MP-D Mitamura Rikero Kogyo (Japan) and are uncorrected. C, H and N analyses were carried out at Midwest Microlab, Indianapolis (USA). Infrared spectra were recorded in the range of 4000-400 cm⁻¹ as KBr pellets or thin film (Nujol) on a Bio-Rad Elmer 16FPc FT-IR spectrophotometer. ¹H, ¹³C and ¹¹⁹Sn NMR spectra were recorded on a Brucker AM-250

^{*} Corresponding author. E-mail: drsa54@yahoo.com

spectrometer (Germany) using CDCl₃ as an internal reference $[\delta^{-1}H (CDCl_3) = 7.25: \delta^{-13}C (CDCl_3) = 77.0]$. ¹¹⁹Sn NMR spectra were obtained with Me₄Sn [Ξ (Sn) = 37.296665] as an external reference. Mass spectra were recorded on a MAT 8500 Finnigan (Germany) at 70 eV.

Synthesis of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl) benzoic Acid

The ligand acid was synthesized by the reaction of maleic anhydride and 4-aminobenzoic acid, according to the reported method [9].

Synthesis of Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

a) 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid (2.17 g, 10 mmol) was suspended in dry toluene (100 ml) and treated with Et₃N (2.78 ml, 20 mmol). The mixture was refluxed for 3-4 h. To a reaction flask containing a solution of triethylammonium maleoyl benzoate in dry toluene, diorganotin dichloride (5 mmol) or triorganotin chloride (10 mmol) was added with constant stirring. The reaction mixture was refluxed for 8-10 h. The reaction mixture containing Et₃NHCl was filtered off, such that the organotin derivative remained in the filtrate. The solvent was removed by a rotary apparatus. The mass left behind was crystallized from CH_2Cl_2 and n-hexane (1:1).

b) The ligand 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) benzoic acid (2.17 g, 10 mmol) was suspended in dry toluene, (100 ml). To this solution, solid Oct_2SnO (5 mmol) was added

with constant stirring and refluxed for 8-10 h. Water formed during the reaction was removed *via* a Dean and Stark trap. The solvent was evaporated by rotary apparatus and the product obtained was recrystallized in CH_2Cl_2 and n-hexane (1:1).

The general chemical reactions for both di- and triorganotin compounds are given below:

$$R_{2}SnCl_{2} + 2LHNEt_{3} \longrightarrow R_{2}SnL_{2} + 2Et_{3}NHCl$$

$$R_{3}SnCl + LHNEt_{3} \longrightarrow R_{3}SnL + Et_{3}NHCl$$

$$Oct_{2}SnO + 2LH \longrightarrow Oct_{2}SnL_{2} + 2H_{2}O$$

HL = 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid

RESULTS AND DISCUSSION

The physical and analytical data for the investigated compounds are given in Tables 1 and 2, respectively. All complexes are non-hygroscopic and are stable in air and light.

Infrared Spectra

Table 3 records the IR data for the ligand and its tin(IV) complexes. The IR spectra of the ligand show strong absorption in the region 3412 cm^{-1} , which is attributable to v (OH) stretching vibrations. The band in the 1705 cm⁻¹ region is assigned to v (C=O) vibration. It shows a bathochromic shift after the ligand complexes with tin. In addition, the bands in the regions 1514 and 1310 cm⁻¹ are attributed to COO (asym)

 Table 1. Physical and Analytical Data for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

Comp. No.	General formula	Molecular formula	M.W.	M.P. (°C)	Yield (%)
(1)Me ₂	Me_2SnL_2	$C_{24}H_{20}N_2O_8Sn$	583	70	85
(2)Bu ₂	Bu_2SnL_2	$C_{30}H_{30}N_2O_8Sn$	665	190	80
(3)Ph ₂	Ph_2SnL_2	$C_{34}H_{24}N_2O_8Sn$	707	111	65
(4)Oct ₂	OCt_2SnL_2	$C_{38}H_{48}N_2O_8Sn$	779	120	68
(5)Me ₃	Me ₃ SnL	$C_{14}H_{15}NO_4Sn$	380	_	70
(6) Bu ₃	Bu ₃ SnL	$C_{23}H_{33}NO_4Sn$	506	-	72
(7)Ph ₃	Ph ₃ SnL	$C_{29}H_{22}NO_4Sn$	566	98	82
(8)Bz ₃	Bz ₃ SnL	C ₃₂ H ₂₇ NO ₄ Sn	608	_	75

Comp. No.	Calcd. (Found)									
	%C	%Н	%N							
(1)Me ₂	49.60 (49.39)	3.12 (3.29)	4.82 (4.69)							
(2)Bu ₂	54.16 (53.92)	4.55 (4.41)	4.12 (4.31)							
(3)Ph ₂	57.90 (58.11)	3.14 (3.23)	3.97 (4.14)							
(4)Oct ₂	58.70 (58.93)	5.96 (6.11)	3.60 (3.42)							
(5)Me ₃	44.25 (44.11)	3.98 (3.88)	3.69 (3.58)							
(6)Bu ₃	54.57 (54.70)	6.57 (6.70)	2.77 (2.40)							
(7)Ph ₃	61.52 (61.32)	3.74 (3.65)	2.47 (2.58)							
(8)Bz ₃	63.19 (62.98)	4.47 (4.39)	2.30 (2.36)							

 Table 2. Analytical Data for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

and COO (sym) vibrations, respectively. The spectra of the complexes show bands in the region 590-528 cm⁻¹ and 496-420 cm⁻¹, which are due to Sn-C and Sn-O stretching vibrations. It is known that denticity of a -COO group can be determined with a high level of probability based on the of values v_{asym} (COO) and v_{sym} (COO) and/or their difference: Δv (COO) = v_{asym} (COO)- v_{zym} (COO). The Δv (COO) from 189-135 cm⁻¹ in the investigated compounds aids in the evaluation of the denticity of the -COO group both in CHCl₃ solution and in the solid state [10,11].

Mass Spectra

The mass spectral data for tri- and diorganotin(IV)

derivatives 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) of benzoic acid are given in Table 4. A molecular ion peak of very low intensity is observed in compounds (2), (5), (6) and (8), while it is absent in the other compounds. The base peaks in compounds (1), (3) and (5) are due to a $[C_{11}H_6NO_4]^+$ fragment at m/z 217. While in compound (2), a $\left[C_{26}H_{22}N_2O_8Sn\right]^+$ fragment is responsible for the base peak. In compounds (4) and (7), the base peak is due to a $[C_4H_9]^+$ fragment at m/z 57. The base peaks in compounds (6) and (8) are observed due to $[C_{19}H_{24}NO_4Sn]^+$ and $[C_7H_7]^+$ fragments at m/z 450 and 91, respectively. Primary fragmentation is due to the loss of an R group. However, secondary and tertiary fragmentation occurs by the loss of an R group in the triorganotin(IV) derivatives, while the diorganotin(IV) derivatives exhibit slightly different patterns. Secondary fragmentation is achieved due to a loss of either an R group or CO₂ molecule.

The general fragmentation pattern for di- and triorganotin(IV) carboxylates is given in Schemes 1 and 2.

NMR Spectra

¹H NMR Spectra. The ¹H NMR studies for these compounds have been carried out in the deuterated solvent, $CDCl_3$, at room temperature. Different proton resonances were assigned on the basis of their multiplicity and intensity patterns. The integration spectra were in accordance with the number of protons proposed for each molecular fragment. Compounds (1) and (5) give singlet at 1.22 and 0.59 ppm, respectively, for the CH₃ group. Compounds (3) and (7) show

 Table 3. IR Spectral Data (cm⁻¹) for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl) benzoic Acid

Comp. No.	ν (NH)	ν (COO _{sym})	ν (COO _{asym})	Δν	v (CO)	v (Sn–C)	v (Sn–O)
HL	3310	1310	1614	304	1705	_	_
$(1)Me_2$	3351	1398	1535	137	1716	584	440
(2)Bu ₂	3320	1365	1512	143	1720	590	485
(3)Ph ₂	3398	1369	1556	187	1712	550	420
(4)Oct ₂	3396	1361	1513	144	1713	556	460
(5)Me ₃	3303	1363	1509	146	1716	530	475
(6)Bu ₃	3384	1325	1510	185	1717	529	460
(7)Ph ₃	3352	1379	1514	135	1716	541	496
(8)Bz ₃	3314	1361	1550	189	1712	528	449

Shahid et al.

Fragment ion	(1)Me ₂	(2) Bu ₂	(3)Ph ₂	(4)Oct ₂	(5) Me ₃	(6)Bu ₃	(7)Ph ₃	(8)Bz ₃
R ₃ SnOOCR'	-	_	_	_	380 (3)	567 (4)	567 (n.o)	608 (3)
$R_2Sn(OOCR')_2$	583 (n.o)	665 (8)	707 (n.o)	779 (n.o)	_	_	_	_
$R_2SnOOCR'$	-	_	-	-	366 (52)	450 (100)	490 (n.o)	518 (4)
RSnOOCR'	350 (n.o)	392 (1)	411 (4)	448 (72)	350 (n.o)	392 (2)	414 (n.o)	427 (6)
SnOCOR'	335 (3)	335 (32)	335 (10)	335 (6)	335 (4)	335 (16)	335 (n.o)	335 (3)
R_3Sn^+	-	_	-	-	164 (10)	290 (6)	347 (n.o)	392 (6)
R_2Sn^+	149 (9)	233 (n.o)	271 (22)	345 (4)	149 (9)	233 (5)	271 (3)	301 (11)
Sn^+	120 (72)	120 (4)	120 (5)	120 (6)	120 (68)	120 (4)	120 (6)	120 (2)
sigma^+	76 (3)	76 (n.o)	76 (5)	76 (4)	76 (2)	76 (n.o)	76 (8)	76 (4)
$\left[C_{11}O_4H_6N\right]^+$	217 (100)	217 (n.o)	217 (100)	217 (80)	217(100)	217 (n.o)	217 (n.o)	217 (n.o)
$\left[C_{26}H_{22}O_{8}N_{2}Sn\right] ^{+}$	609 (n.o)	609 (100)	609 (n.o)	609 (5)	609 (n.o)	609 (n.o)	609 (n.o)	609 (n.o)
$\left[C_{4}H_{9}\right]^{+}$	_	57 (24)	57 (38)	57 (100)	_	57 (9)	57 (100)	57 (19)
$\left[\mathrm{C}_{7}\mathrm{H}_{7}\right]^{+}$	-	_	_	_	_	_	-	91(100)

Table 4. Mass Spectral Data for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

Scheme 1. Fragmentation Pattern for Diorganotin Dicarboxylates

multiplet for the phenyl group at 7.59 and 7.40-7.48 ppm, respectively. The phenyl group gives multiplet due to a complex pattern. Compound (8) gives singlet at 1.23 ppm for the CH₂ group and multiplet at 7.23-7.39 ppm for C₆H₅. ¹H NMR data for the reported compounds is given in Table 5.

¹³C NMR Spectra. The parameters of the ¹³C NMR spectra are given in Table 6. The complete assignment of signals confirms the identity of the compounds. The downfield shift of the ¹³C (COO) group in the range of 177.3-174.3 ppm reflects the structure and the way the bonds of the COO group

Scheme 2. Fragmentation Pattern for Triorganotin Carboxylates

groups in all investigated compounds are within the expected range.

¹¹⁹Sn NMR Spectra. In Table 6 are also included the δ (¹¹⁹Sn) values of the studied compounds in solution with CDCl₃ as the non-coordinating solvent. The central tin atoms in this solvent have a distorted tetrahedral geometry according to their δ (¹¹⁹Sn) values from 149.9 to -149.2 ppm [11,12].

BIOLOGICAL ACTIVITY

All the reported compounds were tested for their toxicity by using the Brine Shrimp method [13]. Etoposide ($LD_{50} =$

Table 5. ¹H NMR Data for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

where R = Me, Bu, Ph, Bz, Oct

		Proton Number		
Comp. No.				R
	2,2'	3,3'	4,4′	
HL	7.90d (8.1)	8.03d (8.2)	8.12 s	_
(1)Me ₂	7.86d (8.1)	8.12d (8.2)	8.23 s	1.22s
(2)Bu ₂	7.43d (8.1)	8.06d (8.2)	8.15 s	1.12-1.17t, 1.28-1.30m, 0.85t, 1.55-1.60m
(3)Ph ₂	7.66d (8.1)	8.10d (8.2)	8.33 s	7.59m
(4)Oct ₂	7.44d (8.1)	8.09d (8.2)	8.12 s	0.73-2.1m
(5)Me ₃	7.49d (8.1)	8.15d (8.2)	8.25 s	0.59s
(6)Bu ₃	7.84d (8.1)	8.06d (8.2)	8.20 s	0.82t, 1.12-1.17t, 1.23-1.31m, 1.55-1.58m
(7)Ph ₃	7.64d (8.1)	8.09d (8.2)	8.11 s	7.40-7.48m
(8)Bz ₃	7.45d (8.1)	8.13d (8.2)	8.14 s	1.23s, 7.23-7.39m

are connected to the central tin atom. The chemical shift values δ (¹³C) (CO) of all compounds are in the region of 169.5-166.9 ppm. The remaining carbons do not show much shift in their values. Compound (2), Bu₂SnL₂, gives signal at 13.4, 26.5 (63.2), 27.4 (213) and 16.1 (363) ppm for carbons 8 to 11, respectively. The values of the chemical shifts of the R

7.4625 μ g ml⁻¹) was used as a standard drug. The results are given in Table 7. Compounds (1) and (2) both had an LD₅₀ of 17.1238 μ g ml⁻¹, while the compounds (5), (7) and (8) did not exhibit any toxicity at all. Previous reports [14,15] have shown that the toxicity of organotin compounds depends upon the

Shahid et al.

Carbon No.	HL	(1)Me ₂	(2)Bu ₂	(3)Ph ₂	(4)Oct ₂	(5)Me ₃	(6)Bu ₃	(7)Ph ₃	(8)Bz ₃
1	169.9	174.9	177.3	177.3	174.3	174.8	175.1	176.5	175.1
2	129.8	130.0	129.0	129.5	129.6	129.6	129.5	130.1	130.9
3,3'	134.8	134.8	134.3	134.8	134.8	134.3	134.3	134.8	134.3
4,4′	126.1	125.7	125.1	125.7	125.7	125.1	125.1	125.7	125.0
5	135.2	135.8	135.4	136.8	136.1	138.2	135.4	136.4	136.5
6,6′	166.9	169.5	168.9	169.3	169.4	169.2	168.9	169.3	169.5
7,7′	133.2	133.2	133.2	133.2	133.2	133.2	133.2	133.4	133.2
8	_	4.82	13.4	131.5	24.9	8.4	13.4	135.4	29.6
9	-	_	26.5 (63.2) ^a	129.5	22.9	-	25.2	137.7	134.8
10	_	-	27.4 (213) ^a	128.6	32.1	_	26.5	129.5	128.9
11	_	_	16.1 (363) ^a	125.7	29.7	_	26.2	128.6	126.5
12	_	_	_	_	29.5	_	_	_	125.5
13	_	_	_	_	32.3	_	_	_	_
14	_	_	_	_	22.9	_	_	_	_
15	_	_	_	_	14.2	_	_	_	_
¹¹⁹ Sn	_	_	146.9	-125.78	-146.3	145.79	-149.2	_	142.45

Table 6. ¹³C and ¹¹⁹Sn NMR Data for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

^a Values in parentheses are ¹¹⁹Sn-¹³C couplings.

Ŕ	=	R	for	triorgai	notin
---	---	---	-----	----------	-------

 $\mathbf{R}' = \mathbf{L}$ for diorganotin

nature of their organic groups.

The antibacterial activity of the synthesized compounds was tested against six different bacteria. The agar well diffusion method [16] was used for screening their antibacterial effects. The results given in Table 8 show that methyl, butyl and phenyltin carboxylates are the most potent candidates against the tested bacteria. All of these compounds were active against *Bacillus subtilis*.

Earlier reports show that higher antifungal activity is associated with tributyl and triphenyltin compounds [13]. In the present series, the highest antifungal activity was exhibited by the tributyltin carboxylates. Miconazole and ketoconazole

Comp. No.	Dose (µg ml ⁻¹)	No. of Shrimps	No. of Survivors	LD ₅₀ (µg ml ⁻¹) for Brine Shrimp	LD ₅₀ (µg ml ⁻¹) for Etoposide as a Standard Drug
HL	100	30	0	< 1	7.4625
	10	30	0		
	1	30	0		
(1)Me ₂	100	30	0	17.1238	7.4623
	10	30	23		
	1	30	30		
(2)Bu ₂	100	30	0	17.1238	7.4625
	10	30	8		
	1	30	10		
(3)Ph ₂	100	30	0	13.0923	7.4625
	10	30	7		
	1	30	10		
(4)Oct ₂	100	30	0	< 1	7.4625
	10	30	0		
	1	30	0		
(5) Me ₃	100	30	10	_	7.4625
	10	30	10		
	1	30	10		
(6)Bu ₃	100	30	0	5.8399	7.4625
	10	30	2		
	1	30	10		
(7)Ph ₃	100	30	10	_	7.4625
	10	30	10		
	1	30	10		
(8)Bz ₃	100	30	10	_	7.4625
	10	30	10		
	1	30	10		

 Table 7. Brine Shrimp (Artemia Salina) Bioassay for the Toxicity of Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

were also used as standard drugs and the corresponding results are summarized in Table 9.

ACKNOWLEDGEMENTS

Saqib Ali is thankful to Prof. B. Wreckmeyer for providing spectroscopy facilities. Financial support from the University

Research Fund (URF) of Quaid-i-Azam University is highly appreciated.

REFERENCES

[1] A.G. Davis, P.J. Smith, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic

Shahid et al.

Bacteria	Comp. No.										
-	HL	(1)Me ₂	(2) Bu ₂	(3) Ph ₂	(4)Oct ₂	(5)Me ₃	(6) Bu ₃	(7)Ph ₃	(8) Bz ₃		
Escherichia coli	-	9	12	_	-	6	_	_	-		
Bacillus subtilis	12	17	17	15	15	17	17	14	15		
Shigella flexnari	10	9	13	10	-	8	19	11	-		
Staphylococcus aureus	10	12	14	15	12	16	18	12	13		
Pseudomonas aeruginosa	11	11	11	10	14	11	12	-	12		
Salmonella typhi	_	9	13	10	_	10	10	14	10		

Table 8. Antibacterial Activity for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid Using Ampicilline (H2O)3 and Cephalexin Na as Standard Drugs

Table 9. Antifungal Activity for Organotin(IV) Complexes of 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic Acid

Name of fungi	Comp. No.									Standard drug
	HL	(1)Me ₂	(2)Bu ₂	(3)Ph ₂	(4)Oct ₂	(5)Me ₃	(6)Bu ₃	(7)Ph ₃	(8)Bz ₃	
Trichophyton	42.1	60	0	0	67.2	72.6	94.7	36.84	68.4	Miconazole
long fusum										Ketoconazole
Candida	31.5	0	0	0	0	0	100	0	0	Miconazole
albicans										Ketoconazole
Aspergillus	0	0	44.4	10	0	44.4	100	0	0	Amphotericin-B
flavus										Flucytosine
Microsporum	65	0	20	0	0	36.84	100	36.84	72.2	Miconazole
canis										Ketoconazole
Fusarium	0	0	45	0	0	0	100	0	0	Miconazole
solani										
Candida	0	0	0	0	0	0	100	0	0	Miconazole
glabrata										

Chemistry, Vol. 2, Pergamon Press, Oxford, 1982.

- [2] C.J. Evans, S. Karpel, Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16, Elsevier, Amsterdam, 1985.
- [3] S.J. Blunden, P.A. Cussack, R. Hill, The Industrial Use of Tin Chemicals, Royal Society of Chemistry, London, 1985.
- [4] I. Omae, Organotin Chemistry, J. Organomet. Chem.

Library, Vol. 21, Elsevier, Amsterdam, 1989.

- [5] M. Gielen, in: N.F Cardarelli (Ed.), Tin as a Vital Nutrient: Implications in Cancer Prophylaxis and Other Physiological Processes. Antitumour Active Organotin Compounds, CRC Press 1986.
- [6] I. Haiduc, C. Silvestru, Coord. Chem. Rev. 99 (1990) 253.
- [7] K. Sisido, Y. Takeda, Z. Kinngawa, J. Am. Chem. Soc. 83 (1961) 538.
- [8] W.F.F. Armarego, C.L.L. Cahi, Purification of Laboratory Chemicals; 5th Ed., Butterworth: Oxford, 2003.
- [9] J.O. Park, S.H. Jang, J. Poly. Sci. Poly. Chem. 30 (1992) 723.
- [10] Q. Xie, Z. Yang, Li Jiang, Main Group Met. Chem. 19 (1996) 509.
- [11] B. Mahieu, M. Gielen, Main Group Met. Chem. 13

(1990) 167.

- [12] J. Holecek, M. Nadvornik, K. Handler, A. Lycka, J. Organomet. Chem. 241 (1983) 177.
- [13] B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobson, D.E. Nichols, M.R. McLaughlin, J.L. Brine Shrimp, Planta Med. 45 (1982) 31.
- [14] Krigman, A.P. Silverman, Neurotoxicology. 5 (1984) 129.
- [15] J.M. Barnes, H.B. Stoner, Brit. J. Ind. Med. 15 (1958)15.
- [16] a) R.A. Carron, J.M. Maran, L. Montero, Fernandozalgo, A. Dominguez, Plantes Medicinals et Phytotherapic. 21 (1987) 195; b) Atta-ur-Rahman, M.I. Choudhary, W.J. Thomsen, Bioassay Techniques for Drug Development, Harward Academic Press, Amsterdam 14 (2001).