Journal of the Iranian Chemical Society, Vol. 3, No. 3, September 2006, pp. 233-241.

JOURNAL OF THE Iranian Chemical Society

Neat Reaction Technology for the Synthesis of 4-Oxo-thiazolidines Derived from 2-SH-Benzothiazole and Antimicrobial Screening of Some Synthesized 4-Thiazolidinones[†]

K.G. Desai^{a,*}, J.P. Raval^b and K.R. Desai^c

^aDepartment of Chemistry, Faculty of Science, Synthetic Organic Chemistry Research Laboratory, Veer Narmad South Gujarat University, Surat, Gujarat State, India ^bIndustrial Chemistry Division, Department of Chemistry, V.N.S.G. University, Surat, Gujarat State, India ^cChemistry Department, Organic Chemistry Division, Faculty of Science, V. N.S.G. University, Surat, Gujarat State, India

[†]This paper is dedicated to Prof. K.R. Desai in recognition of his outstanding contributions to "Green Chemistry"

(Received 8 April 2006, Accepted 2 May 2006)

The synthesis of 4-thiazolidinones **4a-j** in a good yields from the heterocyclization reaction of 2-(benzothiazol-2-ylthio)-N'-benzylideneacetohydrazide **3a-j** with SHCH₂COOH in DMF in the presence of a catalytic amount of anhydrous $ZnCl_2$ under microwave irradiation is described and compared with conventional synthesis methods. All structures of the newly synthesized compounds were elucidated by elemental analysis and spectral data. Some of the new compounds were tested against bacteria (*Gram- ve* and *Gram+ ve*) and fungi.

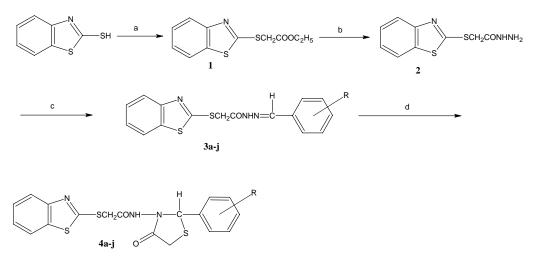
Keywords: 4-Thiazolidinones, Heterocyclization, Microwave effect, Antimicrobial activity

INTRODUCTION

2-Mercaptobenzothiazole derivatives are known to possess various biological activities [1]. 4-Thiazolidinones are also well known for versatile pharmacological activities such as hypnotic [2], anaesthetic [3], antifungal [4], anthelmintic [5], and antiviral [6] agents, as well as CNS [7] stimulants. The incorporation of the 4-oxothiazolidine moiety into a 2-mercaptobenzothiazole scaffold enhances its activity [8]. The synthetic route of the abovementioned compounds is shown in Scheme 1.

In the last few years, microwave-induced organic reaction enhancement (MORE) chemistry has gained popularity as a non-conventional technique for rapid synthesis [9] and many researchers have described accelerated organic reactions, with a large number of papers proving the synthetic utility of MORE chemistry in routine organic synthesis [10,11]. It can be termed "e-chemistry" because it is easy, effective, economical and eco-friendly and is believed to be a step toward green chemistry.

Under the framework of green chemistry [12-14], and following earlier reported applications of MORE [15-18] chemistry, we now report a novel, environmentally benign approach using a facile, ZnCl₂-mediated microwave synthesis of 4-thiazolidinones.


EXPERIMENTAL

Regents, Instrumentation and Measurements

All reagents, 2-mercaptobenzothiazole, solvents and catalyst were of analytical grade and used directly. All the melting points were determined using a PMP-DM scientific melting point apparatus and are uncorrected. The purity of compounds was checked routinely by thin layer

^{*}Corresponding author. E-mail: kgdapril@yahoo.co.in

Desai et al.

a) ClCH₂COOC₂H₅, anhydrous K₂CO₃, dry acetone; b) NH₂NH₂, ethanol; c) substituted aromatic aldehyde,
2-3 drops of gl. AcOH, ethanol; d) SHCH₂COOH, anhydrous ZnCl₂, DMF.

Scheme 1

chromatography (TLC) using silica gel-G coated Al-plates (0.5 mm thickness, Merck) and spots were visualized by exposing the dry plates to iodine vapor. IR spectra (v_{max} in cm⁻¹) were recorded on a Shimadzu FT-IR 8300 spectrophotometer using KBr or the Nujol technique; ¹H NMR spectra were acquired on a Bruker WM 400FT 400 MHz NMR spectrometer using CDCl₃ or DMSO-d₆ as the solvent and TMS as the internal reference (chemical shifts in ppm); ¹³C NMR was performed on a Varian AMX 400 (100 MHz) spectrometer using solutions in CDCl₃ and mass spectra were acquired on a Jeol JMS D-300 spectrometer operating at 75 eV. The elemental analysis (C, H, N) of compounds was performed on Carlo Erba-1108 elemental analyzer. Their results were found to be in good agreement with the calculated values. The microwave assisted reactions were carried out using a QPro-M Microwave Sample Preparation System (Questron Technologies Corporation, Mississauga, Ontario, Canada), wherein microwaves are generated by magnetron at a frequency of 2450 MHz having an output energy range of 100 to 500 watts and an infrared sensor for temperature control with an attached reflux condenser with constant stirring (to avoid the risk of high pressure development). The QPro-M apparatus used, as shown in Fig. 1, was especially well-suited for stringent reaction conditions, including anhydrous atmosphere.

Microwave-mediated synthesis of ethyl 2-(benzothiazolylthio)acetate (1). Mercaptobenzothiazole (0.01 mol, 1.67 g) and ethylchloroacetate (0.01 mol, 1.22 ml) in dry acetone (4 ml) in the presence of anhydrous K₂CO₃ (1 g) were placed in a round bottom flask and microwave irradiated (300 W, 61-62 °C) for 4.0 min [21,22]. Upon completion of the reaction (monitored by TLC), the reaction mixture was allowed to cool to room temperature and the treated with cold water. The separated solid was filtered, washed with water and recrystallized from chloroform to furnish compound 1, yield 76%, as a white crystal. m.p.: 58-59 °C. Anal.: Calcd. for C₁₁H₁₁NO₂S₂: C, 52.18; H, 4.22; N, 5.40. Found: C, 52.16; H, 4.23; N, 5.38%; IR: v (cm⁻¹) 3023 (aromatic ring), 1070 (aliphatic ether), 638 (C-S), 1723 (>C=O of ester), 1614 (-C=N-), 1223 and 1041 (C-O-C), 721 (C-S-C) and 2915, 2871, 1423, 713 (-CH₂ and -CH₃); ¹H NMR: δ (ppm) 1.23 (t, 3H, J = 7 Hz, -COOCH₂CH₃), 4.13 (q, 2H, J = 7 Hz, -COOCH₂CH₃), 4.46 (s, 2H, S-CH₂-), 6.73-7.87 (m, 4H, Ar-H).

Conventional synthesis of ethyl 2-(benzothiazolylthio)acetate (1). An equimolar solution of 2-mercaptobenzothiazole (0.01 mol, 1.67 g) and ethyl chloroacetate (0.01 mol, 1.22 ml) in dry acetone (4 ml) in the presence of anhydrous K_2CO_3 (1 g) was refluxed on a water bath for 16 h. The solvent was removed by vacuum distillation and the residue was recrystallized from chloroform to furnish compound 1, yield 66%, as a white solid. m.p.: 58-59 °C.

Microwave-mediated synthesis of 2-(benzothiazol-2-

Neat Reaction Technology for the Synthesis of 4-Oxo-thiazolidines

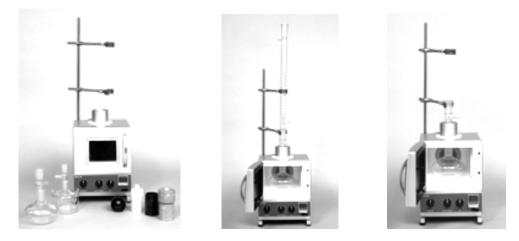


Fig. 1. QPro-M Microwave System.

ylthio)acetohydrazide (2). Compound 1 [23,24] (0.01 mol, 2.53 g) and hydrazine hydrate (0.01 mol, 0.9 ml) in ethanol (20 ml) were placed in a round bottom flask and microwave irradiated (350 W, 76-78 °C) for 3.5 min [21,22]. After completion of the reaction (monitored by TLC.), the mixture was cooled and the resulting solid was filtered, dried and recrystallized from ethanol to give compound 2, yield 78%, as a pinkish-white powder. m.p.: 192-193 °C. Anal.: Calcd. for C₉H₉N₃OS₂: C, 45.22; H, 3.10; N, 17.60. Found: C, 45.19; H, 3.07; N, 17.57%; IR: v (cm⁻¹) 3352, 3378 (-NHNH₂), 1665 (>C=O of amide); ¹H NMR: δ (ppm) 6.80-7.90 (m, 4H, Ar-H), 4.40 (s, 2H, -NH₂), 4.81 (s, 2H, S-CH₂-), 7.88 (s, 1H, -CONH-).

Conventional synthesis of 2. Compound **1** (0.01 mol, 2.53 g) and hydrazine hydrate (0.01 mol, 0.9 ml) in ethanol (20 ml) were refluxed for about 5 h on a steam bath. After cooling the resulting solid was filtered, dried and recrystallized from ethanol to obtain compound **2**, yield 61%, as a pinkish-white solid. m.p.: 192-193 °C.

Microwave-mediated synthesis of 2-(benzothiazol-2ylthio)-N'-4-nitrobenzylideneacetohydrazide (3a). A mixture of compound 2 [23,24] (0.01 mol, 2.39 g) and 4nitrobenzaldehyde (0.01 mol, 1.51 g) and 2-3 drops of glacial acetic acid in ethanol (20 ml) were placed in a round bottom flask and microwave irradiated (400 W, 76-78 °C) for 3 min [21,22]. After completion of the reaction (monitored by TLC), the solvent was removed and residue recrystallized from the chloroform-methanol mixture to obtain compound **3**, yield 75%, as a pale yellow crystal. m.p.: 153-155 °C. Anal.: Calcd. for $C_{16}H_{12}N_4O_3S_2$: C, 51.50; H, 3.16; N, 14.91. Found: C, 51.47; H, 3.15; N, 14.87%; IR: v (cm⁻¹) 3340, 1335 (-NH-), 1668 (>C=O), 1626 (-N=CH-); ¹H NMR: δ (ppm) 4.40 (s, 1H, -N=CH-), 8.13 (s, 1H, -CONH-), 6.93-7.73 (m, 4H, Ar-H).

Conventional synthesis of 3a. A mixture of compound **2** (0.01 mol, 2.39 g) and 4-nitrobenzaldehyde (0.01 mol, 1.51 g) and 2-3 drops of glacial acetic acid in ethanol (25 ml) was refluxed on a water bath for about 6 h. The solvent was removed and residue recrystallized from a chloroformmethanol mixture to yield compound **3a**, (59%) as a pale yellow powder. m.p.: 153-155 °C. Compounds **3b-j** were prepared similarly by treating **2** with various aromatic aldehydes.

Microwave mediated synthesis of 3-{[2-(benzothiazol-2-ylthio)ethyl]amino}-2-(4-nitrophenyl)-1,3-thiazolidin-

4-one (4a). A mixture of **3a** [23,24] (0.01 mol, 3.72 g) in DMF and thioglycollic acid (0.01 mol, 0.92 ml) with a pinch of $ZnCl_2$ were placed in a round bottom flask and microwave irradiated (400 W, 146 °C) for 3 min [21,22]. After completion of the reaction (monitored by TLC), the solution was then diluted with ice cold water. The solid product that formed was filtered, dried and recrystallized from ethanol, yield 86%, as a dark yellow solid.

Conventional synthesis of 4a. A mixture of **3a** (0.01 mol, 3.72 g) in ethanol and thioglycollic acid (0.01 mol, 0.92 ml) with a pinch of $ZnCl_2$ were placed in a round bottom flask and refluxed for 8 h on a steam bath. After completion of the reaction (monitored by TLC), the ethanol was distilled off to obtain product **4a**. The solid product was filtered, dried and recrystallized from ethanol, yield 68%, as a yellow powder. Compounds **4b-j** were prepared similarly, using **3b-j** respectively.

Spectral DATA of 4-Thiazolidinones (4a-j)

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(4-nitrophenyl)-1,3-thiazolidin-4-one (4a). Yellow powder, m.p.: 168 °C; Anal.: Calcd. for C₁₈H₁₄N₄O₄S₃: C, 48.45; H, 3.15; N, 12.58. Found: C, 48.43; H, 3.13; N, 12.55%; IR: v (cm⁻¹) 3340, 1330 (-NH-), 1665 (>C=O, amidyl), 1717 (>C=O, cyclic), 1340 (Ar-NO₂); ¹H NMR: δ (ppm) 8.53 (s, 1H, -CONH-), 7.00-7.95 (m, 8H, Ar-H), 3.15 (s, 1H, -N=CH-), 4.48 (s, 2H, S-CH₂-), 3.60 (s, 2H, -CH₂-thiazolidinone); ¹³C NMR: δ (ppm) 127 (C₁), 128.9 (C₂, C₆), 126.2 (C₃, C₅), 150 (C₄), 60 (>C₂·H-N<), 30 (-S-CH₂-), 172.5 (cyclic, >C₄·=O), 169.2 (amide, >C=O), 57 (-CH₂-thiazolidinone), 157.5 (C_{1"}, $C_{2"}, C_{4"}, C_{5"}, C_{6"}, C_{7"}$, heteroaromatics); MS (*m/z*): 446[M⁺] $(C_{18}H_{14}O_4N_4S_3^+)$, 238 $(C_9H_5O_3N_3S^+)$, 223 $(C_9H_7O_3N_2S^+)$, 210 ($C_8H_8O_2N_3S^+$), 208 ($C_9H_4ONS_2^+$), 195 ($C_8H_7O_2N_2S^+$), 180 $(C_8H_4NS_2^+)$, 166 $(C_7H_2NS_2^+)$, 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3ON_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(3,4,5-tri-

methoxyphenyl)-1,3-thiazolidin-4-one (4b). White powder, m.p.: 240 °C; Anal.: Calcd. for C₂₁H₂₀N₃O₅S₃: C, 51.36; H, 4.05; N, 8.51. Found: C, 51.32; H, 4.07; N, 8.55%; IR: v (cm⁻¹) 3335, 1335 (-NH-), 1660 (>C=O, amidyl), 1720 (>C=O, cyclic), 2825 (Ar-OCH₃); ¹H NMR: δ (ppm) 8.50 (s, 1H, -CONH-), 6.98-7.93 (m, 8H, Ar-H), 3.18 (s, 1H, -N=CH-), 4.46 (s, 2H, S-CH₂-), 3.63 (s, 2H, -CH₂thiazolidinone), 3.91 (s, 3H, -OCH₃); ¹³C NMR: δ (ppm) 127.1 (C₁), 129.1 (C₂, C₆),126.4 (C₃, C₅), 153 (C₄), 52.3 (>C₂'H-N<), 30.1 (-S-CH₂-), 172 (cyclic, >C₄=O), 168.2 (amide, >C=O), 58 (-CH₂-thiazolidinone), 156.5 (C_{1"}, C_{2"}, C4", C5", C6", C7", heteroaromatics), 35.4 (CH3OC6H4-); MS (m/z): 491[M⁺] (C₂₁H₂₀N₃O₅S₃⁺), 283 (C₁₂H₁₆O₄N₂S⁺), 268 $(C_{12}H_{15}O_4NS^+)$, 255 $(C_{11}H_{16}O_3N_2S^+)$, 240 $(C_{11}H_{16}O_3N_2S^+)$, 208 ($C_9H_4ONS_2^+$), 180 ($C_8H_4NS_2^+$), 166 ($C_7H_2NS_2^+$), 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3O N_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(2-

hydroxyphenyl)-1,3-thiazolidin-4-one (4c). Yellow crystalline powder, m.p.: 131 °C; Anal.: Calcd. for $C_{18}H_{15}N_3O_3S_3$: C, 51.81; H, 3.61; N, 10.05. Found: C, 51.79; H, 3.59; N, 10.07%. IR: ν (cm⁻¹): 3290, 1338 (-NH-), 1670 (>C=O, amidyl), 1725 (>C=O, cyclic), 3590 (Ar-OH); ¹H NMR: δ (ppm) 8.49 (s, 1H, -CONH-), 7.20-7.90 (m, 8H, Ar-H), 3.17 (s, 1H, -N=CH-), 4.31 (s, 2H, S-CH₂-), 3.61 (s, 2H, -CH₂-thiazolidinone), 3.65 (s, 1H, -OH); ¹³C NMR: δ (ppm) 126.9 (C₁), 128.8 (C₂, C₆), 127 (C₃, C₅), 155 (C₄), 53.3 (>C₂·H-N<), 31.5 (-S-CH₂-), 175 (cyclic, >C₄·=O), 167.2 (amide, >C=O), 59 (-CH₂-thiazolidinone), 154.5 (C₁°, C_{2°},

 $C_{4"}$, $C_{5"}$, $C_{6"}$, $C_{7"}$, heteroaromatics); MS (*m/z*): 417[M⁺] ($C_{18}H_{15}N_3O_3S_3^+$), 209 ($C_9H_{11}O_2N_2S^+$), 208 ($C_9H_4ONS_2^+$), 194 ($C_9H_{10}O_2NS^+$), 181 ($C_8H_{11}ON_2S^+$), 180 ($C_8H_4NS_2^+$), 166 ($C_7H_2NS_2^+$), 134 ($C_7H_2NS^+$), 122 ($C_6H_2NS^+$), 115 (C_3H_3O N_2S^+), 108 ($C_6H_2S^+$), 90 ($C_6H_2N^+$).

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(3hydroxyphenyl)-1,3-thiazolidin-4-one (4d). Light yellow, m.p.: 143 °C; Anal.: Calcd. for C₁₈H₁₅N₃O₃S₃: C, 51.82; H, 3.63; N, 10.11. Found: C, 51.80; H, 3.61; N, 10.10%. IR: v (cm⁻¹) 3333, 1341 (-NH-), 1680 (>C=O, amidyl), 1734 (>C=O, cyclic), 3571 (Ar-OH); ¹H NMR: δ (ppm) 8.55 (s, 1H, -CONH-), 6.85-7.65 (m, 8H, Ar-H), 3.11 (s, 1H, -N=CH-), 4.36 (s, 2H, S-CH₂-), 3.59 (s, 2H, -CH₂thiazolidinone), 3.64 (s, 1H, -OH); ¹³C NMR: δ (ppm) 127.1 (C₁), 129.3 (C₂, C₆), 126.8 (C₃, C₅), 153.5 (C₄), 54.3 (>C₂·H-N<), 32.5 (-S-CH₂-), 175.2 (cyclic, >C₄=O), 166.7 (amide, >C=O), 59.1 (-CH₂-thiazolidinone), 153.8 (C₁", C₂", C₄", C₅", $C_{6"}$, $C_{7"}$, heteroaromatics); MS (m/z): 416[M⁺] (C₁₈H₁₅N₃O₃S₃⁺), 208 (C₉H₄ONS₂⁺), 193 (C₉H₁₀O₂NS⁺), 180 $(C_8H_4NS_2^+)$, 166 $(C_7H_2NS_2^+)$, 165 $(C_8H_{10}ONS^+)$, 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3O N_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(4-

hydroxyphenyl)-1,3-thiazolidin-4-one (4e). Brown crystal, m.p.: 159 °C; Anal.: Calcd. for C₁₈H₁₅N₃O₃S₃: C, 51.80; H, 3.60; N, 10.03. Found: C, 51.77; H, 3.57; N, 10.05%; IR: v (cm⁻¹) 3390, 1337 (-NH-), 1679 (>C=O, amidyl), 1730 (>C=O, cyclic), 3583 (Ar-OH); ¹H NMR: δ (ppm) 8.46 (s, 1H, -CONH-), 6.88-7.90 (m, 8H, Ar-H), 3.12 (s, 1H, -N=CH-), 4.45 (s, 2H, S-CH2-), 3.62 (s, 2H, -CH2thiazolidinone), 3.58 (s, 1H, -OH); ¹³C NMR: δ (ppm) 126.8 (C1), 128.5 (C2, C6), 127.1 (C3, C5), 154 (C4), 56 (>C2'H-N<), 32 (-S-CH₂-), 176.2 (cyclic, >C₄=O), 168.7 (amide, >C=O), 59.5 (-CH₂-thiazolidinone), 155.8 (C₁", C₂", C₄", C₅", $C_{6^{\circ}}$, $C_{7^{\circ}}$, heteroaromatics); MS (*m*/*z*): 418[M⁺] $(C_{18}H_{15}N_{3}O_{3}S_{3}^{+})$, 210 $(C_{9}H_{11}O_{2}N_{2}S^{+})$, 208 $(C_{9}H_{4}ONS_{2}^{+})$, $195 (C_9H_{10}O_2NS^+)$, $182 (C_8H_{11}ON_2S^+)$, $180 (C_8H_4NS_2^+)$, 167 $(C_8H_{10}ONS^+)$, 166 $(C_7H_2NS_2^+)$, 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3ON_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(2methoxyphenyl)-1,3-thiazolidin-4-one (4f). Dark yellow, m.p.: 188 °C; Anal.: Calcd. for C₁₉H₁₇N₃O₃S₃: C, 52.92; H, 3.96; N, 9.10. Found: C, 52.90; H, 3.94; N, 9.07%; IR: ν (cm⁻¹): 3375, 1337 (-NH-), 1671 (>C=O, amidyl), 1726 (>C=O, cyclic), 2828 (Ar-OCH₃); ¹H NMR: δ (ppm) 8.47 (s, 1H, -CONH-), 6.88-7.95 (m, 8H, Ar-H), 3.13 (s, 1H, -N=CH-), 4.49 (s, 2H, S-CH₂-), 3.64 (s, 2H, -CH₂- thiazolidinone), 3.96 (s, 3H, -OCH₃); ¹³C NMR: δ (ppm) 126.8 (C₁), 128.7 (C₂, C₆), 125.9 (C₃, C₅), 153.2 (C₄), 53.1 (>C₂:H-N<), 32 (-S-CH₂-), 172.5 (cyclic, >C₄:=O), 168 (amide, >C=O), 58.2 (-CH₂-thiazolidinone), 157.5 (C₁", C₂", C₄", C₅", C₆", C₇", heteroaromatics), 35.7 (CH₃OC₆H₄-); MS (*m*/*z*): 431[M⁺] (C₁₉H₁₇N₃O₃S₃⁺), 223 (C₁₀H₁₃O₂N₂S⁺), 208 (C₉H₄ONS₂⁺), 195 (C₉H₁₃ON₂S⁺), 180 (C₈H₄NS₂⁺), 166 (C₇H₂NS₂⁺), 134 (C₇H₂NS⁺), 122 (C₆H₂NS⁺), 115 (C₃H₃O N₂S⁺), 108 (C₆H₂S⁺), 90 (C₆H₂N⁺).

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(4-

methoxyphenyl)-1,3-thiazolidin-4-one (4g). Brownish vellow solid, m.p.: 208 °C; Anal.: Calcd. for C19H17N3O3S3: C, 52.86; H, 3.90; N, 9.02. Found: C, 52.88; H, 3.92; N, 9.04%; IR: v (cm⁻¹) 3378, 1339 (-NH-), 1675 (>C=O, amidyl), 1721 (>C=O, cyclic), 2830 (Ar-OCH₃); ¹H NMR: δ (ppm): 8.53 (s, 1H, -CONH-), 6.65-7.77 (m, 8H, Ar-H), 3.16 (s, 1H, -N=CH-), 4.29 (s, 2H, S-CH₂-), 3.66 (s, 2H, -CH₂thiazolidinone), 3.89 (s, 3H, -OCH₃); ¹³C NMR: δ (ppm) 127.8 (C1), 129.7 (C2, C6), 124.9 (C3, C5), 152.2 (C4), 54.1 (>C₂'H-N<), 33 (-S-CH₂-), 171.5 (cyclic, >C₄'=O), 167 (amide, >C=O), 57.2 (-CH₂-thiazolidinone), 156.5 (C_{1"}, C_{2"}, C4", C5", C6", C7", heteroaromatics), 34.7 (CH3OC6H4-); MS (m/z): 430[M⁺] (C₁₉H₁₇N₃O₃S₃⁺), 222 (C₁₀H₁₃O₂N₂S⁺), 208 $(C_9H_4ONS_2^+)$, 207 $(C_{10}H_{12}O_2NS^+)$, 194 $(C_9H_{13}ON_2S^+)$, 180 $(C_8H_4NS_2^+)$, 179 $(C_9H_{12}ONS^+)$, 166 $(C_7H_2NS_2^+)$, 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3O N_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(2-

chlorophenyl)-1,3-thiazolidin-4-one (4h). Light brown solid, m.p.: 211 °C; Anal.: Calcd. for C₁₈H₁₄N₃O₂S₃Cl: C, 49.61; H, 3.23; N, 9.66. Found: C, 49.59; H, 3.21; N, 9.64%; IR: v (cm⁻¹) 3385, 1340 (-NH-), 1678 (>C=O, amidyl), 1722 (>C=O, cyclic), 835 (Ar-Cl); ¹H NMR: δ (ppm) 8.50 (s, 1H, -CONH-), 6.72-7.82 (m, 8H, Ar-H), 3.17 (s, 1H, -N=CH-), 4.38 (s, 2H, S-CH₂-), 3.65 (s, 2H, -CH₂-thiazolidinone); ¹³C NMR: δ (ppm) 128.8 (C₁), 128.7 (C₂, C₆),125.9 (C₃, C₅), 151.2 (C₄), 54.3 (>C₂·H-N<), 33.2 (-S-CH₂-), 171.7 (cyclic, >C₄⁻=O), 167.2 (amide, >C=O), 57.4 (-CH₂-thiazolidinone), 156.7 (C_{1"}, C_{2"}, C_{4"}, C_{5"}, C_{6"}, C_{7"}, heteroaromatics); MS (m/z): 435.5[M⁺] (C₁₈H₁₄N₃O₂S₃Cl⁺), 228 (C₉H₁₀ON₂SCl⁺), 213 ($C_9H_9ONSCl^+$), 208 ($C_9H_4ONS_2^+$), 200 ($C_8H_{10}N_2SCl^+$), 185 (C₈H₉NSCl⁺), 180 (C₈H₄NS₂⁺), 166 (C₇H₂NS₂⁺), 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_3H_3O N_2S^+)$, 108 $(C_6H_2S^+)$, 90 $(C_6H_2N^+)$.

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(3chlorophenyl)-1,3-thiazolidin-4-one (4i). Light brown powder, m.p.: 226 °C; Anal.: Calcd. for C₁₈H₁₄N₃O₂S₃Cl: C,

49.54; H, 3.16; N, 9.60. Found: C, 49.57; H, 3.18; N, 9.62%; IR: v (cm⁻¹) 3380, 1341 (-NH-), 1673 (>C=O, amidyl), 1719 (>C=O, cyclic), 825 (Ar-Cl); ¹H NMR: δ (ppm) 8.48 (s, 1H, -CONH-), 7.15-7.92 (m, 8H, Ar-H), 3.18 (s, 1H, -N=CH-), 4.41 (s, 2H, S-CH₂-), 3.61 (s, 2H, -CH₂-thiazolidinone); ¹³C NMR: δ (ppm) 127.7 (C₁), 129.8 (C₂, C₆),124.8 (C₃, C₅), 152.3 (C₄), 53.2 (>C₂·H-N<), 34.3 (-S-CH₂-), 170.6 (cyclic, >C₄=O), 168.3 (amide, >C=O), 58.3 (-CH₂-thiazolidinone), 157.8 (C₁⁻⁻, C₂⁻⁻, C₄⁻⁻, C₅⁻⁻, C₆⁻⁻, C₇⁻⁻, heteroaromatics); MS (*m*/*z*): 436[M⁺] (C₁₈H₁₄N₃O₂S₃Cl⁺), 229 (C₉H₁₀ON₂SCl⁺), 214 (C₉H₉ONSCl⁺), 208 (C₉H₄ONS₂⁺), 201 (C₈H₁₀N₂SCl⁺), 186 (C₈H₉NSCl⁺), 180 (C₈H₄NS₂⁺), 166 (C₇H₂NS₂⁺), 134 (C₇H₂NS⁺), 122 (C₆H₂NS⁺), 115 (C₃H₃O N₂S⁺), 108 (C₆H₂S⁺), 90 (C₆H₂N⁺).

3-{[2-(Benzothiazol-2-ylthio)ethyl]amino}-2-(4chlorophenyl)-1,3-thiazolidin-4-one (4j). Deep brown crystal, m.p.: 219 °C; Anal.: Calcd. for C₁₈H₁₄N₃O₂S₃Cl: C, 49.63; H, 3.26; N, 9.68. Found: C, 49.61; H, 3.23; N, 9.66%; IR: v (cm⁻¹) 3383, 1342 (-NH-), 1668 (>C=O, amidyl), 1718 (>C=O, cyclic), 831 (Ar-Cl); ¹H NMR: δ (ppm) 8.51 (s, 1H, -CONH-), 6.96-7.86 (m, 8H, Ar-H), 3.11 (s, 1H, -N=CH-), 4.40 (s, 2H, S-CH₂-), 3.58 (s, 2H, -CH₂-thiazolidinone); ¹³C NMR: δ (ppm) 126.8 (C₁), 128.9 (C₂, C₆), 123.9 (C₃, C₅), 151.4 (C₄), 52.3 (>C_{2'}H-N<), 33.4 (-S-CH₂-), 169.7 (cyclic, >C₄=O), 167.4 (amide, >C=O), 57.4 (-CH₂-thiazolidinone), 156.7 (C1", C2", C4", C5", C6", C7", heteroaromatics); MS (m/z): 434[M⁺] (C₁₈H₁₄N₃O₂S₃Cl⁺), 226 (C₉H₁₀ON₂SCl⁺), 211 ($C_9H_9ONSCl^+$), 208 ($C_9H_4ONS_2^+$), 201 ($C_8H_{10}N_2SCl^+$), 198 (C₈H₉NSCl⁺), 182 (C₈H₉NSCl⁺), 180 (C₈H₄NS₂⁺), 166 $(C_7H_2NS_2^+)$, 134 $(C_7H_2NS^+)$, 122 $(C_6H_2NS^+)$, 115 $(C_{3}H_{3}ON_{2}S^{+}), 108 (C_{6}H_{2}S^{+}), 90 (C_{6}H_{2}N^{+}).$

Antimicrobial Activity

Compounds **4a-j** were screened for their antibacterial activity against *Bacillus subtilis* (ATCC-6633), *Staphylococcus aureus* (ATCC-6538) and *Escherichia coli* (ATCC-8739) and antifungal activity against *Candida albicans* (ATCC-64550), *Candida krusei* (ATCC-14243) and *Candida parapsilosis* (ATCC-22019) by filter paper disc technique [20]. Standard antibacterial streptomycin and antifungal griseofulvin were also tested under similar conditions for comparison.

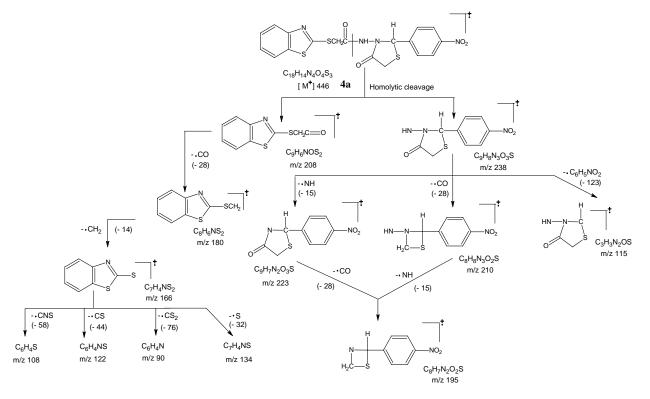
RESULTS AND DISCUSSION

Conventional methodology sometimes has lower yields than microwave protocols. Microwave irradiation facilitates

Desai et al.

	Substitutents		М	Conventional method			
Entry	-R	Time	Power	Constant temperature	Yield	Time	Yield
		(min)	(watts)	(°C)	(%) ^a	(h)	(%) ^a
4 a	$4-NO_2$	3.0	400	146	86	8.0	68
4b	3,4,5-(OCH ₃) ₃	2.0	500	150	95	7.0	71
4 c	2-OH	2.5	450	148	89	7.5	66
4d	3-OH	2.5	450	148	89	7.5	76
4e	4-OH	2.0	500	150	95	7.0	71
4f	2-OCH ₃	3.0	400	146	86	8.0	59
4 g	4-OCH ₃	2.5	450	148	89	7.5	62
4h	2-Cl	2.0	500	146	95	8.0	72
4i	3-Cl	2.5	450	144	89	8.5	74
4j	4-Cl	3.0	400	146	86	8.0	70

Table 1. Comparison of Microwave and Conventional Techniques (compounds 4a-j)


^aYield of isolated products.

the polarization of the molecule under irradiation causing a rapid reaction to occur. A comparative study in terms of yield and reaction period is shown in Table 1. All the compounds synthesized were adequately characterized by elemental analysis and spectral data. The MS fragmentation pattern is presented (Fig. 2) as an additional evidence for the proposed structure of **4a**.

2-Mercaptobenzothiazole and ethyl chloroacetate in the presence of anhydrous K₂CO₃ in dry acetone as a reaction mediator afforded ethyl 2-(benzothiazolylthio)acetate 1. The formation of compound 1 was evidenced by the appearance of signal at 1.23 and 4.13 ppm due to CH₃ and CH₂ respectively in $-COOCH_2CH_3$ (J = 7 Hz) ethyl 2-(benzothiazolylthio)acetate 1 in ¹H NMR spectra and IR spectra bands due to 1723 cm⁻¹ (>C=O of ester) and 2915, 2871, 1423, 713 cm⁻¹ (CH₂ and CH₃) also confirmed the formation of compound 1. Compound 1 and hydrazine hydrate in ethanol as a reaction media afforded 2-(benzothiazol-2-ylthio)acetohydrazide 2. In the ¹H NMR spectra of 2, a peak at δ 7.88 ppm was observed due to -CONH - and a peak at δ 4.40 ppm was due to -NH₂. Furthermore, in the IR spectra, the bands at 1665 cm⁻¹ (>C=O of amide) and 3352, 3378 cm^{-1} (-NHNH₂) also confirm the formation of compound 2. Compound 2, aromatic aldehyde and 2-3 drops of glacial acetic acid in ethanol as a reaction mediator afforded 2-(benzothiazol-2vlthio)-N'-benzylideneacetohydrazide 3. The formation of 3 was evidenced by the appearance of signal at 4.40 ppm due to -N=CH-. In the ¹H NMR spectra, the appearance of

signal at 60 ppm was due to >CH-N<. In the ¹³C NMR spectra and IR spectra bands, due to (-N=CH-) at 1626 cm⁻¹, also confirmed the formation of 3. Compound 3, thioglycollic acid and anhydrous ZnCl₂ in DMF as a reaction mediator afforded thiazolidinone 4. In the ¹H NMR spectra of 4a, the peak at δ 3.60 ppm was observed due to CH₂ in the thiazolidinone ring; in the 13 C NMR spectra of 4a, the peak at δ 30 ppm was observed due to CH₂, 172.5 ppm (cyclic, >C=O) and 157.5 ppm (heteroaromatics) in the thiazolidinone ring. In the IR spectra of 4a, the bands at 1717 cm⁻¹ (>C=O, cyclic) also confirmed the formation of thiazolidinone 4a. In the mass spectra of 4a, the molecular ion peak at 446 [M⁺] also confirmed the formation of thiazolidinone. The fragment ion (m⁺) peak was observed at 238 m/z (C₉H₈O₃N₃S⁺), 223 m/z (C₉H₇O₃N₂S⁺), 210 m/z $(C_8H_8O_2N_3S^+)$, 208 m/z $(C_9H_6ONS_2^+)$, 195 m/z $(C_8H_7N_2O_2^+)$, 180 m/z (C₈H₆NS₂⁺), 166 m/z (C₇H₄NS₂⁺), 134 m/z $(C_7H_4NS^+)$, 115 m/z $(C_3H_3N_2OS^+)$, 122 m/z $(C_6H_4NS^+)$, 108 m/z (C₆H₄S⁺) and 90 m/z (C₆H₄N⁺) by the loss of fragment radicals and neutrals •CO (-28), •NH (-15), •C₆H₅NO₂ (-123), •CH₂ (-14), •CNS (-58), •CS₂ (-76), •S (-32) and •CS (-44).

All the reactions that used microwave irradiation were completed in 3-5 min, whereas similar reactions under conventional heating (steam bath) at similar temperatures (80-100 °C) gave poor yields with comparatively longer reaction time periods (Table 1), demonstrating that the effect of microwave irradiation is not purely thermal. Microwave irradiation facilitates the polarization of the molecules under

Neat Reaction Technology for the Synthesis of 4-Oxo-thiazolidines

Fig. 2. Fragmentation pattern of 2-(4-Nitrophenyl)-3-[(2-benzothiazolylthio)-acetamidyl]-4-oxo-thiazolidines 4a.

irradiation causing rapid reaction to occur. This is consistent with the reaction mechanism, which involves a polar transition state [19]. The effectiveness of microwave irradiation and conventional heating for the synthesis of compounds **4a-j** has been compared (Table 1). Under microwave irradiation conditions, the yields of **4a-j** are high (95-86%), whereas using conventional heating the yields are only 59-76%. The effects of irradiation power and time on the reaction were also studied and the results summarized in Tables 2 and 3. High yields of compounds **4a-j** were obtained at 500 W for 2.0 min under microwave irradiation.

The antimicrobial screening results, presented in Table 4, reveal that compounds **4d** and **4f** exhibited a significant activity against *E. coli*. Compounds **4c** and **4b** showed promising activity against *S. aureus* and *B. subtilis*, respectively. While the compounds **4a**, **4e**, **4g**, **4h** and **4j** exhibited highest activity against both *S. aureus* and *B. subtilis*. Similarly, compounds **4a**, **4b**, **4e**, **4g**, **4i** and **4j** showed highest degree of inhibition against *C. albicans*, *C. krusei* and *C. parapsilosis*. However, the activities of all the tested compounds are less than that of standards.

In conclusion, this new method for the synthesis of 4-

thiazolidinones using anhydrous ZnCl₂ as a catalyst in DMF under microwave irradiation offers significant improvements over existing procedures. Also, this simple and reproducible technique affords various 4-thiazolidinones with short reaction times, excellent yields, and without the formation of undesirable by-products.

Table 2. The Effect of Microwave Irradiation Power^a

Irradiation power (watts)	300	350	400	450	500
Yield (%)	80	83	86	89	95

^a Irradiation time is 2.0 min.

Table 3. The Effect of Microwave Irradiation Time^a

Irradiation time (min)	4.5	4.0	3.0	2.5	2.0
Yield (%)	80	83	78	89	95

^a Irradiation power is 500 watts.

Desai et al.

Compound	An	tibacterial activ	vity	Antifungal activity			
	B. subtilis	S. aureus	E. coli	C. albicans	C. krusei	C. parapsilosis	
4a	++	++	++	++	++	++	
4b	-	-	-	++	+ +	++	
4c	++	++	++	-	-	-	
4d	+	+	+ + +	+	+	++	
4e	++	++	++	+ +	+ +	++	
4f	+	+	+ + +	+ + +	+	+ + +	
4g	+ +	+ +	++	+ +	+ +	+ +	
4h	+ +	+ +	++	-	-	-	
4i	-	-	-	+ +	+ +	+ +	
4j	+ +	++	++	+ +	++	++	
		Zone of Ir	nhibition of St	andard Drugs			
Streptomycin	+ + + +	+ + + +	++++				
Griscofulvin				++++	++++	++++	

Table 4. Antimicrobial Activity of Compounds 4a-j

Zone of inhibition: (-) 6 mm; (+) 6-15 mm; (++) 15-20 mm; (+++) 20-25 mm; (++++) 25-30 mm.

ACKNOWLEDGEMENTS

One of the authors (KGD) is thankful to the Head of the Chemistry and Bioscience Department of Veer Narmad South Gujarat University, Surat. We are gratefully acknowledge the Gujarat Council on Science and Technology, Gandhinagar for financial assistance (Grant no. GUJCOST/200389/MRP/2003-04/10689), and the Central Drug Research Institute at Lucknow for spectral analysis.

REFEERENCES

- K.R. Desai, K.H. Chikhalia, J. Indian Chem. Soc. 71 (1994) 155.
- [2] N. Guru, S.D. Srivastava, J. Scient. Ind. Res. 60 (2001) 601.
- [3] M.S. Chande, K.S. Jathar, Indian J. Chem. 34B (1995) 654.
- [4] S.N. Sawhney, P.K. Sharma, A. Gupta, Indian J. Chem. 32B (1993) 1190.
- [5] S.K. Srivastava, S.D. Srivastava, Indian J. Chem. 36B (1997) 826.
- [6] R.S. Lodhi, S.D. Srivastava, Indian J. Chem. 36B

(1997) 947.

- [7] L. Jaish, S.K. Srivastava, J. Scient. Ind. Res. 60 (2001) 33.
- [8] Nizamuddin, A. Singh, Indian J. Chem. 43B (2004) 901.
- [9] S. Varma, Green Chem. 1 (1999) 43.
- [10] R. Borah, D.J. Kalita, J.C. Sarma, Indian J. Chem. 41B (2002) 1032.
- [11] M. Kidwai, B. Dave, R. Venkataramanan, Indian J. Chem. 41B (2002) 2414.
- [12] J.H. Clark, Green Chem. 1 (1999) 1.
- [13] R. Trotzki, M. Nuchter, B. Ondruschka, Green Chem. 5 (2003) 285.
- [14] K.G. Desai, K.R. Desai, Indian J. Chem. (Sec. B), In press.
- [15] M. Nuchter, B. Ondruschka, W. Bonrath, A. Gum. Green Chem. 6 (2004) 128.
- [16] V.M. Patel, K.R. Desai, ARKIVOC (USA), (www.arkat-usa.org). 1 (2004) 123.
- [17] K.G. Desai, K.R. Desai, Molbank (www.mdpi.org/molbank) (Switzerland), 2006, M475 (MOL File: m477. mol).
- [18] K.G. Desai, K.R. Desai, D. Padmanabhan, Molbank

(www.mdpi.org/molbank) (Switzerland), 2006, M475 (MOL File: m478. mol).

- [19] A. Loupy, L. Perreux, M. Moneuse, Pure. Appl. Chem. 11 (2001) 161.
- [20] K.G. Desai, K.R. Desai, J. Heterocyclic Chem. 43 (2006) 1083.
- [21] K.G. Desai, K.R. Desai, Indian J. Chem. (Sec B).

44B (2005) 2093.

- [22] K.G. Desai, K.R. Desai, Indian J. Chem. (Sec B). 44B (2005) 2097.
- [23] S.K. Srivastava, S.D. Srivastava, Indian J. Chem. 43B (2004) 399.
- [24] K.G. Desai, K.R. Desai, J. Saudi Chem. Soc. 9 (2005) 631.